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The splittings of nuclear energy levels caused by the electric field gradients acting on the quadru-
pole moments of nuclei in the neighbourhood of atomic defects in cubic metals may serve as
“fingerprints” providing us with a unique characterization of these defects. In favourable cases the
NQDOR technique (nuclear quadrupole double resonance) permits sensitive measurements of these
splittings with good resolution. The present paper outlines the status of the ab-initio calculation of
electric field gradients with emphasis on the theoretical basis (density functional theory with local
density approximation) and on the techniques required for handling the specific problems associated
with defects. Recent work by the supercell approach on atomic defects in Al and Cu, making use
either of the full-potential linearized augmented-plane-wave method or of the ab-initio pseudopo-
tential method, are reported and compared with experiments. The excellent agreement between
experiment and theory for the field gradients acting on the nearest-neighbour nuclei of monovacan-
cies in Al demonstrates the reliability and the potential of the theory.
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Introduction

Quadrupolar splitting of the energy levels of nuclei
possessing electric quadrupole moments Q occurs
only if the traceless symmetric rank-two tensor of the
gradient of the electric field, ¥, does not vanish at the
nuclear sites. This tensor is zero by symmetry if the
nuclear sites have cubic (or isotropic) point symmetry.
As a consequence, in perfect crystals with face-cen-
tered cubic (A1) or body-centered cubic (A2) structure,
but also in perfect NaCl-type (B1) or CsCl-type (B2)
crystals as well as others, there will be no quadrupolar
level splittings, irrespective of the magnitude of Q. Any
perturbation of the perfect lattice structure, however,
destroys the cubic point symmetry at the lattice sites
in its immediate neighbourhood. Provided the nuclei
carry a sufficiently large electric quadrupole moment,
this gives us the possibility — at least in principle — to
study such perturbations, in the following called “de-
fects”, by nuclear magnetic resonance (NMR) mea-
surements. This was recognized and worked out
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rather fully quite early in the development of NMR, as
may be seen, e.g., from the review by Bloembergen [1].
At that time the only experimental technique available
was to observe, by NMR in large applied magnetic
fields, the transitions between the quadrupolar-split
Zeeman levels of the nuclei. It was realized [1] that
because of its low sensitivity this technique required
defect concentrations (> 10~ 3) that cannot normally
be achieved with intrinsic atomic defects such as va-
cancies and self-interstitials. Another disadvantage of
the “classical” method of studying the quadrupolar
effects due to defects in cubic crystals by measuring
the splitting of the Zeeman NMR levels is that well
resolved transitions are obtained only if the electric
field gradients (efg) at the nuclei are fairly large. This
condition is only rarely satisfied for intrinsic atomic
defects in metals. The early experimental work on
quadrupolar effects due to crystal defects concen-
trated therefore entirely on dislocations (introduced
by extensive plastic deformation) and on foreign
atoms on regular lattice sites (in the case of metals:
dilute alloys). In these cases the fraction of the nculei
experiencing sufficiently large efg could be made large
enough to permit quantitative investigations.

The situation began to change when Redfield [2]
developed the nuclear quadrupole double resonance
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(NQDOR) technique which, when applicable, gave
not only much higher sensitivity than standard NMR
absorption measurements but in addition improved
the resolution substantially, thus allowing level split-
tings to be detected down to the so-called dipolar
line-width (typically a few 10* Hz). The NQDOR
technique combines signal detection by conventional
NMR in a high magnetic field with quadrupole reso-
nance (NQR) in zero magnetic field. It has been de-
scribed in detail at the XIIth International Sympo-
sium on Nuclear Quadrupole Resonance [3], with
special emphasis on the NQDOR equipment built up
at the Max-Planck-Institut fiir Metallforschung in
Stuttgart during the last decade [3, 4].

From the point of view of metal physics, the
NQDOR technique has the weakness that it is appli-
cable only to a limited number of metals (for details
see [3]). So far NQDOR measurements have been
reported on the face-centered cubic (fcc) metals
aluminium and copper. For many years the experi-
ments concentrated on dilute alloys of Cu [3, 5] and Al
[6—11]. The first reports on NQDOR experiments
involving intrinsic atomic defects in metals were those
on electron-irradiated Al by Minier, Andreani, and
Minier [12] in 1978 and on electron-irradiated Cu by
Minier, Minier, and Andreani [13] in 1980. More re-
cently, the NQDOR work on intrinsic atomic defects
in Cu and Al has been considerably extended by the
Stuttgart group. Examples are the study of Cu that
had been electron-irradiated at 90 K [3, 14] or at 20 K
[15], of Al electron-irradiated at 90 K [15], of dilute
CuBe alloys that were electron-irradiated at 90 K [3],
of Cu cold-worked at 77 K or proton-irradiated at
140 K [3, 14], of Cu rapidly quenched either from the
melt [16] or from the solid-state near the melting point
[15], and of Al quenched from the solid-state [15].

The efg generated by atomic defects in metals may
serve as fingerprints that allow us to identify a given
type of defect under quite different experimental
conditions. In contrast to the earlier survey [3],
which emphasized the experimental technique and
contained only a brief overview of the calculation of
efg introduced by point defects in cubic metals, the
present review concentrates on ab-initio computa-
tions of these quantities. The ultimate goal of the
program going on at the Max-Planck-Institut fiir
Metallforschung in Stuttgart is to assign, with the
help of theory, the observed quadrupolar transition
frequencies to well-defined defects. In the case of in-
trinsic defects this requires an “interactive” approach
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involving computations as well as a wide range of
experiments.

The computations necessitate various approxima-
tions. Among them, the most difficult to control is the
so-called local-density approximation (LDA) within
the framework of the density functional theory (see
Sect. 1.2). The comparison between computed and ex-
perimentally determined efg allows us to test the
validity and reliability of the theory. In such a com-
parison two major problems may arise.

(1) Whereas the theory provides us with numerical
values of the electric field gradients at the nuclei,
the experiments give us transition frequencies. Re-
lating these quantities to each other requires
knowledge of the electric quadrupole moments of
the nuclei and of the asymmetry n of the efg ten-
SOr.

(ii) A critical test of the theoretical predictions is pos-
sible only if we can be sure that computations and
measurements pertain to the same defects. While
this present rarely a serious problem for dilute
alloys, the demonstration that the requirement is
satisfied is much more difficult for intrinsic point
defects. The reason is that in irradiation or cold-
working experiments always more than one type
of defect is generated. Even under the somewhat
simpler condition of metals that have been rapidly
quenched from high temperatures, we have to al-
low for the possibility that a substantial fraction
of the quenched-in vacancies is present not as
monovacancies but as divacancies or larger ag-
glomerates.

The accuracy with which the nuclear quadrupole
moment Q is known may vary substantially from nu-
clide to nuclide. Examples are provided by the nu-
clides with which the present paper is concerned, viz.
27Al, ®3Cu, and *°Cu.

According to Sundholm and Olsen [17] the quadru-
pole moment of 27Al is

Q(*7Al) = (1403 + 1.0) - 10~ 3 m?. 1)

The authors arrived at this value by combining the
measured nuclear quadrupole coupling constant,
eV..Q/h (e = elementary electric charge, h = Planck’s
constant), with the efg at the nucleus of Al (3 s, 3p;
2P;,,) atoms as obtained by ab-initio multiconfigura-
tional Hartree-Fock calculations. The uncertainty in
(1) is claimed to be less than 1%, i.e. smaller than the
computational errors in the calculation of the field
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gradients reported in this paper. This means that for
the comparison of NQDOR experiments on Al with
the theory the uncertainty of Q is negligible.

The situation is different for Cu. While the ratio of
the quadrupole moments of the stable Cu isotopes,

Q(®3Cu)/Q (°*Cu) = 1.079, (2

is known with high accuracy from the NQDOR work
of Minier and Minier [5], the absolute Q values are
much less certain. The value recommended by Pyykko
and Li [18], which comes from the X-ray measurement
of the hyperfine structure of mesonic Cu atoms,
Q(%3Cu)= — (220 +15)- 103! m?, (3)

has an uncertainty of about 7%. This has to be taken
into account in the comparison between experiment
and theory.

For a given defect, the asymmetries at the various
sites, defined as

ni= V= V)/Vzs (4)

yy

where the principal components V; of the efg tensor
are chosen in such a way that

II/zz|Z|V;:y|2'Vxx|’ (5)

should come out of the computations. With regard to
the comparison theory — experiment the situation is
again quite different for Al and Cu. In NQDOR exper-
iments on 27Al (spin 5/2) n may be deduced from the
ratios v,/v, of the transition frequencies of the
|[m|=3/2|m|=5/2 and the |m|=1/2|m|=3/2
transitions. Since the nuclides of natural Cu, ®*Cu and
63Cu, have both spin 3/2, in zero magnetic field they
give rise to one transition (1/2 < 3/2) only, with fre-
quency [19]
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From (6) the separate determination of | V,,| and  is
not possible. The separation may become possible by
means of the nutation technique [20]; however, so far
this technique has not been applied to NQDOR.
The general theory involved in the calculation of efg
in solids is treated in Sect. 1. Subsect. 1.2 gives an
outline of ab-initio electron theory with special em-
phasis on the approximations required for practical
computations. Subsect. 1.3 focuses on the computa-
tion of the efg tensor with special regard to the influ-
ence of the core electrons on the efg. Sect. 2. reports
the results of recent calculations of the efg generated

by intrinsic atomic defects or substitutional foreign
atoms in Al and Cu. The results will be compared with
the numerical values obtained by other theoretical
approaches on the one hand, and with NQDOR mea-
surements on the other hand. Finally, Sect. 3. summa-
rizes the conclusions that may be drawn from the
present work.

1. Ab-initio Calculation of Electric Field Gradients
Introduced by Atomic Defects

1.1 Definition of the efg Tensor

The traceless symmetric tensor of the electric field
gradients (efg) at a nucleus, V' = (V;)), is defined as

o’ 1
= — —06;;AD 5 7
Y axiaxj nucleus 3 Y nucleus ( )
where
o= |2 4 @®)
lr—r|

is the electrostatic potential and g (r) the total ground-
state charge density of the system. The subscript “nu-
cleus” indicates that all derivatives have to be taken at
the position of the nucleus considered, which in the
following will be taken as the origin of our coordinate
system. Inserting (8) into (7) gives us

3x.x.: o
Fy= fg(r) (% ~ r—3> dr. )

According the (9) the part of ¢(r) that has spherical
symmetry around the nucleus does not contribute to
V. Because of the singular behaviour of the expression
in parenthesis at the origin, the non-spherical contri-
bution to the total charge density of the system must
be determined with high accuracy in order to calculate
the efg tensor reliably. For solids, the appropriate tool
to do this is ab-initio electron theory. Since the
NQDOR experiments are carried out at low tem-
peratures (typically at about 2 K) we may confine
ourselves to ground states.

1.2 Ab-initio Electron Theory

The full description of the ground state of a solid
requires the knowledge of its many-body wavefunc-
tion, which depends on the coordinates of all nuclei
and electrons. In practice it is impossible to solve the



492

many-body Schrodinger equation of a solid without
approximations. As a first simplifying approximation
use is made of the Born-Oppenheimer approximation
[21, 22]. It rests on the fact that the electron mass
is much smaller than the nuclear masses. Therefore
the electrons are able to follow the motions of the
nuclei virtually instantaneously. As a consequence, the
positions of the nuclei, R,, may be considered as
classical parameters. Then the electrons obey a many-
body Schrodinger equation that depends on these
parameters. The Born-Oppenheimer approximation,
also known as adiabatic approximation, is well estab-
lished in molecular or atomic physics as well as in
solid state physics. In the present context its use is not
critical [22].

The most important tool to calculate the ground-
state properties of an extended electronic system such
as that of a solid is the density-functional theory (DFT)
of Hohenberg and Kohn [23]. It is based on the fact
that the ground-state properties (e.g., total energy, efg)
of a system of interacting electrons in an external
potential (usually the Coulomb potential of the nuclei
at the positions R,) are completely determined by the
ground-state electronic density, n, (). The total energy
of the system, E, and all other ground-state properties
are functionals of n,(r). The correct ground-state den-
sity is the density that minimizes the total-energy
functional, E = E[n,]. Kohn and Sham [24] showed
that it can be obtained by solving self-consistently a
single-particle Schrodinger equation containing an ef-
fective potential. This equation is called Kohn-Sham
equation; the solutions are the so-called Kohn-Sham
orbitals.

Unfortunately, the preceding recipe of how to ob-
tain the ground-state electronic density has the char-
acter of a proof of existence, since the true form of
E[n ] is only incompletely known. We may — still rig-
orously — subdivide E [n.] according to

E[n]=T,[n]+ Eyln] + Eci[n] + E.[n] (10)

into the kinetic energy functional of noninteracting
particles, T, [n.], with the same density n, as the inter-
acting electrons, the so-called Hartree functional
Ey [n.] of the Coulomb interaction between the elec-
trons, the functional E,,, [n,] of the Coulomb interac-
tion between the electrons and the nuclei, and the
exchange-correlation (xc) functional E,[n.]. It is this
last term that remains unknown. Its exact form, if
known, could be very complicated. The usefulness of
DFT depends therefore critically on whether we can
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find (a better expression may be “guess”) a sufficiently
accurate approximate expression for E, [n.]. Within
the framework of the DFT the most frequently used
approach to the exchange-correlation problem is the
so-called local-density approximation (LDA) [24]. In
the LDA, the xc functional is approximated by

E,[n] = [n.(r)e;(n.(r))dr, (1)

where ¢, (n,) is the xc density per electron of a homo-
geneous electron gas. ¢, (n,) can be determined with
the help of more elaborate many-body calculations
(see, e.g., [25)).

As already mentioned in the Introduction, among
the approximations employed in the present approach
to the ab-initio calculation of ground-state physical
properties of condensed matter LDA is the one that is
most difficult to control. By way of example this may
be seen by comparing the lattice constants as calcu-
lated ab-initio using LDA with the measured ones.
Invariably they come out too small, in Li and Na by
4%, in Cu by 2%, and in Al by 1%.

The literature contains various attempts to improve
on the local density approximation (e.g., the general-
ized gradient approximation (GGA) [26]), but since
their domains of usefulness have not yet been clearly
established (see e.g., [27]), they will not be used in the
present paper. A point clearly in favour of the GGA is
that for Al and Cu the lattice constants calculated
ab-initio are in better agreement with the measured
ones than those obtained from LDA. If the same lat-
tice constants are used in LDA and GGA computa-
tions, the results for the efg differ only slightly, how-
ever.

With the help of DFT and LDA the original many-
body problem has been reduced, though only approx-
imately so, to the solution of a single-particle
Schrodinger equation,

hz
<_ S A+ cpeff(")) Y.r)=¢¥(r),

(i=1,2..,N) (12

(m, = electron mass) for all N electrons of the system,
containing an effectice potential, @ (r), that is given
by

(peff(r) = ¢exl (l‘) + QH (r) W (pxc (r) ’
In (13) @,,,(r) denotes the Coulomb potential of the
nuclei,

(13)

n,(r)

Dy (r) = e? — dr
lr—r]

(14)
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the so-called Hartree potential, and

_ OE(n]

P, (r) on

15)
the exchange-correlation potential. @, accounts for
classical (e.g., Coulomb correlations between the elec-
trons) as well as quantum-mechanical (e.g., Pauli’s ex-
clusion principle) many-body effects, which cannot be
covered by a single-particle Schrodinger equation. In
LDA it reads

?,.(n =

(e (r) &xc (ne ()] - (16)

dn,
Since the Kohn-Sham orbitals ¥, (r) are normalized to
one, [ | %;(r)| > dr = 1, the electronic density of the sys-

tem is obtained in the usual way through

N

n(r) = -21 |®:(r)]2. (17)
The equations (12), (13), and (17) are called Kohn-
Sham equations. They may be solved self-consistently
to give us single-particle energies ¢; and Kohn-Sham
orbitals ¥, (r) for all N, electrons of the system as well
as the electronic density n, (r) by starting with a suit-
ably chosen effective potential @ (r), feeding the elec-
tronic density n, (r) derived from it back into (14) and
(16) to obtain an improved effective potential (13), and
repeating this procedure until n, (r) no longer changes
significantly. The practical side of this procedure will
be briefly discussed below.

According to Bloch’s theorem [28], in periodic
structures the Kohn-Sham orbitals are Bloch waves.
This has the practical consequence that if suffices to
solve the Kohn-Sham equation (12) on a grid of sam-
pling points in the first Brillouin zone of the structure.
However, the perturbation of the perfect lattice struc-
ture by an atomic defect destroys the periodicity of the
crystal. Hence Bloch’s theorem is no longer valid. One
way of dealing with this problem is to use the so-called
supercell method.

The supercell method considers an array of periodi-
cally arranged atomic defects and applies Bloch’s the-
orem to this periodicity rather than to that of the
perfect crystal. The crystal is thus made up of “super-
cells”, each of which contains one defect. If, as in the
present case, we wish to study the properties of iso-
lated defects, the supercell size should be so large that
defect-defect interactions are negligible. (This is the
case if a further increase of the supercell size leaves the

results unchanged.) In practice, this can only rarely be
achieved. One has therefore to pay attention to “finite-
size” effects and correct for them if necessary and pos-
sible.

The methods for obtaining numerical solutions of
the Kohn-Sham equations differ in the choice of the
basis functions into which the Kohn-Sham orbitals of
the valence electrons are expanded. In the work to be
reported in Sect. 2.2 the full-potential linearized aug-
mented-plane-wave (FLAPW) method [29, 30] and the
plane-wave pseudopotential method (see, e.g., [31])
have been used.

In the FLAPW method the wavefunctions of the
valence electrons are expanded in plane waves which
in the vicinity of the nuclei are replaced (“augmented”)
by atomic wavefunctions. The atomic wavefunctions
are the solutions of the spherically averaged Kohn-
Sham equation (12) for a suitably chosen energy. The
augmentation of the plane waves is necessary because
the Kohn-Sham orbitals vary rapidly near the nuclei
and are therefore in this region not suited for an ex-
pansion in plane waves.

The basic idea of the pseudopotential method is to
find a transformation which eliminates both the
closed-shell core states and the rapid variations in the
valence states in the core region out of the formalism.
Its roots go back to Hellmann and Kassatotschkin
[32, 33]. In their “combined approximation proce-
dure” they treated the core electrons by the Thomas-
Fermi method and the valence electrons according to
a Schrodinger equation containing an additional po-
tential which describes the interaction of the valence
electrons with the core electrons. The early work on
“pseudopotentials” was reviewed by Gombas [34].
The objects called pseudopotentials in [34] are poten-
tial-like terms in the Schrodinger equation that were
designed to account for exchange and correlation in-
teractions as well as for Pauli’s exclusion principle but
which did not replace the Coulomb potentials of the
nuclei. In 1952 Fues and Statz showed [35] that it is
possible to replace the Coulomb potential of the ion
cores (nuclei plus core electrons) by an “ersatz poten-
tial” without changing the wavefunctions and energies
of the valence electrons significantly. Rather less de-
scriptively, such “ersatz potentials” were later called
model potentials or pseudopotentials [36].

The modern ab-initio pseudopotential [37] methods
replace the Coulomb potential of each nucleus inside
a radius r_ by a “pseudopotential” that is constructed
ab-initio in such a way that it reproduces the scatter-
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ing properties of the ion cores. The spatial variation of
the pseudopotential may be made week enough to be
handled by a plane-wave expansion of the “pseudo-
wavefunctions” (= solutions of the transformed
Schrodinger equation). The price to pay for this sim-
plification is that the valence-electron density calcu-
lated from the pseudo-wavefunctions by means of (17)
is correct only in the interstitial regions, i.e. the regions
outside the spheres of radius r, around the nuclei.
However, the contribution of the valence electrons to
the efg at the nuclei (in the following simply called
“valence contribution”) can be obtained correctly only
if the non-spherical part of the valence-electron den-
sity is known with sufficient accuracy. For the present
application of the ab-initio pseudopotential method it
is therefore essential that the true, aspherical valence-
electron wavefunction can be reconstructed from the
pseudo-wavefunction [38, 39].

The reconstruction proceeds as follows. The Kohn-
Sham equations are solved self-consistently inside a
sphere of radius r . (chosen slightly larger than r,)
using the electrostatic potential due to the nucleus and
its core electrons as external potential @,,. The as-
pherical boundary conditions at r=r,. are taken
from the pseudopotential calculation. As a matter of
principle, the accuracy of the valence-electron density
obtained in this way and of the efg derived from it is
limited by the over-all accuracy of the pseudopoten-
tial method. Since the reconstruction technique may
introduce small additional inaccuracies, the efg ob-
tainable by the ab-initio pseudopotential method will
clearly be less accurate than those computed by the
FLAPW method. This drawback has to be weighted
against the fact that the plane-wave pseudopotential
method requires much less computational effort than
the FLAPW method, especially for simple metals such
as Al. An example will be given in Sect. 2.2.1, where the
pseudopotential method has enabled us to treat a
large supercell containing as many as 124 Al atoms.

In problems dealing with crystals containing de-
fects, the strength of both the FLAPW method and
the plane-wave pseudopotential method is that they
permit to calculate ab-initio the forces acting on the
nuclei and thus to allow fully for the so-called lattice
relaxation, i.e. for the fact that in the neighbourhood
of an atomic defect the nuclei are displaced from their
regular lattice sites. The relaxed positions of the nuclei
are determined by moving them under the influence of
the forces until all of them have reached positions of
zero force. By a systematic procedure this can be
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achieved with an acceptable numerical effort. In both
methods the formula for the atomic forces simplify
when it is assumed that the electronic density has been
determined self-consistently for the given basis set. In
this case the plane-wave pseudopotential method
yields just the Hellmann-Feynman force [40], which is
the physical electrostatic force on the nuclei. The
FLAPW method, however, requires correction terms
arising from the localized parts of the basis functions
of the (in practice) incomplete basis set. In the present
paper the force formula of Soler and Williams [41] is
employed. This formula, which was originally devel-
oped for the APW method of Soler and Williams [41],
has recently been shown [42] to be applicable to the
FLAPW basis set, too. A general approach to the
computation of ab-initio forces without regarding to
a special basis set is given in [43].

The high-accuracy determination of the lattice re-
laxation is essential for the reliable computation of the
efg around atomic defects in crystals since these de-
pend sensitively on the positions of the nuclei (see
Sect. 2). In this respect the supercell method is clearly
superior to the alternatives that have been in the liter-
ature, viz. the Green’s function method [44] and real-
space cluster calculations.

The Green's function (GF) method, which considers
the atomic defect as a localized perturbation of an
otherwise perfect crystal, was combined with the
Korringa-Kohn-Rostoker (KKR) method [45, 46] by
Dederichs et al. [47] in a full-potential version. In con-
trast to the two methods used in the present work, in
this KKR-GF method the lattice relaxation around
an atomic defect cannot be calculated by moving the
atoms until the computed forces on them vanish. The
main reason for this is that the KKR-GF method
employs the Green’s function of the ideal crystal
rather than that of the perturbed crystal. Hence in the
computation all atoms outside the defect must be
placed on regular lattice sites. An approximate way to
take the lattice relaxation into account is to compute
the forces acting on the atoms at regular lattice sites
and determine their displacements under these forces
from lattice statics, making use of the Born-von-Kar-
man coupling parameters as obtained from the
phonon spectra of the ideal crystal. Since these
parameters do not allow for defect-induced changes,
this procedure can give reliable results only if the lat-
tice relaxations are small, as may be the case around
monovacancies or substitutional foreign atoms. The
method is definitely less suitable for self-interstitials,
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e.g., (100> dumb-bells in fcc metals, since here some
atoms are located far from regular sites. This difficulty
may be circumvented, at least in principle, by increas-
ing the size of the defect, i.e. by considering the origi-
nal atomic defect together with a cluster of a few
surrounding shells of neighbouring atoms as “defect”,
Inside the “defect” the relaxation can be carried out
using the computed interatomic forces. However, the
required increase in size of the defect would entail a
large increase in computation time. For the time be-
ing, this makes this approach to the self-interstitial
problem rather impractical.

In order to perform real-space cluster calculations of
efg even for small clusters, several approximations
have to be made, some of which may be quite serious.
We illustrate this for the real-space linear-muffin-tin-
orbital method [48]. Here the most serious approxi-
mation in the computation of efg generated by defects
is the so-called atomic-sphere approximation (ASA)
[49]. This approximation replaces the Wigner-Seitz
cells of the atoms by spheres of equal volume, inside
of which the potential is assumed to be spherically
symmetric. It is obvious that the ASA may influence
the accuracy of the aspherical part of the valence-elec-
tron density and thus the computed efg considerably.
Furthermore, within the ASA the computation of
atomic forces is a serious problem. At present, in the
real-space linear-muffin-tin-orbital method the lattice
relaxation cannot be taken into account in a satisfac-
tory way. The consequences of this will be illustrated
in Sect. 2.2.1.

1.3 Computation of the Electric Field-Gradient Tensor

As outcome of a self-consistent FLAPW calculation
or of a pseudopotential calculation with subsequent
reconstruction of the true valence wavefunctions the
aspherical valence-electron density, n, (r), and the posi-
tions of the nuclei, R,, are known. In both types of
calculation the core states have initially been assumed
to be spherically symmetric. This allows us, in the
computation of the efg, to replace them by point
charges and to combine them with the nuclear charges
to give us ion charges e Z°" located at R,. The total
charge density of the crystal may thus be written as

o(r)=eYZF"5(r—R)—en,(r). (18)

Inserting (18) into (9) gives us the following expression
for the sum of the contributions of the ion charges
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e Z°" (in the following called lattice contribution) and
of the valence electrons to the tensor of the efg at a
nucleus in the origin of the coordinate system
(R, = 0):

Vyal+lai = erzion
Y

—ejnv(r)<3i;xj - %) dr. (19)

In (19) the dashed sum goes over all nuclei, at posi-
tions R,, except for the nucleus at the origin.*

The fact that so far the core charge density of the
nucleus at R, = 0 has been treated as spherically sym-
metric has the consequence that it does not contribute
to the efg. However, because of the weighting factor
1/r3, the efg is highly sensitive to asphericities of the
charge density close to the nucleus. This means that
even small deviations of the core charge density of the
nucleus at R, from spherical symmetry may con-
tribute strongly to the efg acting on it. Within the
framework of first-order perturbation theory this con-
tribution, ¥;;°"¢, may be estimated by inserting a factor
(1 — y(r) into the integrand of (9) [50, 51] and using
o(r) of (18). To see this, let us consider the electric
quadrupole moment Q of the nucleus at R, =0 as a
perturbation

Po() = — 7 \/%% Vo )

acting on the core electrons. (Y, (F) = the spherical
harmonic of angular momentum /=2 and m=0.)
This perturbation induces a quadrupole moment
Qina(r) in the core charge density. From first-order
perturbation theory it follows [52] that the induced
quadrupole moment is spherically symmetric and pro-
portional to Q. We may therefore write

Qina (M =:=7(Q.

The function 7 (r) introduced by (21) is called Stern-
heimer function. In the approximation leading to (21)
the total quadrupole moment of the system nucleus
plus core electrons at a distance r from the nucleus is
given by Q,,, = (1 — 7(r)) Q. Outside the region of the
core charge density the total quadrupole moment and

3(R)i(Ry); 5ij>

(20)

(21)

! In the literature a different notation is occasionally used,
in which the lattice contribution to the efg is defined as the
contributions of all charges outside a sphere of radius
~ d/2 around the nucleus considered, with d = nearest-
neighbour distance.
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thus 7 (r) cannot vary. Therefore, for r > d/2, y(r) as-
sumes a constant value, 7, known as Sternheimer or
antishielding factor. A charge at a distance r from the
nucleus not belonging to the system “nucleus plus core
electrons” (e.g., due to valence electrons) “sees” the
total quadrupole moment Q. (r) rather than the nu-
clear quadrupole moment Q. Thus, if we wish to ex-
press the quadrupolar transition frequencies in terms
of the nuclear quadrupole moment Q, we have to
multiply the external charges — in the present case
those of the valence electrons and the ion charges
e Z°"(x # 0) — by the factor (1 — y(r)). This gives us
for the core contribution to the efg

core ’ ion 3(R,1),(Ru) 5,"
v =—er.pzie (Mt -

+eJnv(r);r(r)<3xixj - %) dr. (22)

r5

where in the first term we were justified in replacing
7(r) by 7. since the ion charges are at distances from
the nucleus that are larger than d/2. Within the frame-
work of first-order perturbation theory the determina-
tion of V5°"® may thus be reduced to the computation
of y(r).

In combination with the FLAPW method the pres-
ent paper uses an alternative approach (see [53, 54])
that has the advantage of not being restricted to per-
turbation theory. It proceeds as follows.

The self-consistent solution of the Kohn-Sham
equations by means of the FLAPW method gives us
the effective potential @ . In the vicinity of a nucleus
(for simplicity assumed to be at R, =0) it may be
expanded in spherical harmonics according to

D (r) = IZ D (r) Yy, () . (23)
In the self-consistency procedure described so far the
core wavefunctions ¥, (r) were obtained as solutions
of the Kohn-Sham equation (12) with spherically aver-
aged effective potential. As a consequence, the result-
ing core-electron density is up to now spherically sym-
metric. The asphericity of the effective potential (23),
however, leads to a polarization of the core-electron
density. This polarization can be computed at the end
of the FLAPW calculation by solving the aspherical
Kohn-Sham equation

2
(— g A+ oY, (f))'P,-(r) =¢¥,(r) (24)
2"?‘[e Im
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for the correct wavefunctions ¥;(r) of all z=Z,—Z "
core electrons, where Z,, is the charge number of the
nucleus under consideration. For “true” core states,
i.e. core states whose charge density decreases to zero
within d/2, (24) is an “atomic” problem, with no solid-
state boundary conditions to be satisfied. If the core
wavefunctions are known, the — now aspherical —
core-electron density is given by

n(r)=3 %02,

i=1

(25)

Inserting — en,(r) into (9) gives us the contribution

3% %, 0;:
y.core — _ Lt d

of the core electrons to the efg tensor at R, = 0. From
(19) and (26) we thus obtain to a good approximation
the total efg tensor

(26)

V;j = Vi}/al+la\ aB V};ore . (27)

As described so far the present method is a “one-
shot approximation”, since the reaction of the valence
electrons to the asphericity of the core-electron den-
sity has been neglected. It has the advantage over the
Sternheimer-function approach that the computation
of the aspherical core-electron density, n_(r), may be
included in the self-consistency cycle of the FLAPW
method without a significant increase in computa-
tional time. Exploratory computations indicate that
the “one-shot approximation” may give quite accu-
rate results for the core contributions to the efg. It
appears that this is due to the fact that the asphericity
of the core charge is in general small compared to that
of the valence charge density (see Sect. 2.2).

The approach described above for calculating the
core contribution to the efg relies on the fact that the
aspherical effective potential (13) is known. In the
pseudopotential method the correct from of @, (r) in
the vicinity of the nucleus considered is unknown,
owing to the introduction of the pseudopotential. Un-
fortunately, this is still true after the true valence
wavefunctions are reconstructed [39], since in the re-
construction program the small asphericity of the po-
tential inside the reconstruction sphere is neglected.
This should be a good approximation since the cor-
rect aspherical valence-electron density is almost com-
pletely determined by the aspherical boundary condi-
tions supplied by the pseudopotential calculation. Of
course, if the correct aspherical charge density is
known, we may solve Poisson’s equation in order to
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obtain the correct aspherical effective potential, but
this has so far not been implemented in the recon-
struction program. Therefore, at present the calcula-
tion of the core contribution to the efg in the pseudo-
potential formalism is not practicable. The use of the
Sternheimer function, y(r), is an alternative, but this
has so far not been done either.

Recent progress has allowed us to take into ac-
count, within the FLAPW method, the influence of
the high-lying core states (e.g., of 3s and 3p electrons
in Cu) on the efg together with the valence contribu-
tion with the help of so-called local orbitals [55, 56]
without significant increase in computing time. The
results of a local-orbital calculation and of the “one-
shot approximation” will be compared in Sects. 2.2.1
and 2.2.2 for two test cases.

2. Electric Field Gradients in FCC Metals
2.1 Crystallographic Classification

NQDOR allows us, under suitable experimental
conditions, to detect NQR transitions of nuclei that
experience the same efg. In the investigation of atomic
defects in crystals a necessary (but by no means suffi-
cient) condition for this is that these nuclei all have the
same distance from the defect centres. Nuclei at the
same distance are said to lie on the same shell. We
number the shells according to increasing distances in
the perfect lattice. In the fcc lattice the distances from
a fixed lattice site are

n
d=\/;a0,

where a, is the edge length of the elementary cube and
neN. Examples for the numbering of shells according
to (28) are a vacant lattice site or a substitutional
foreign atom (Fig. 1, left).

If the efg tensors at the nuclei are not required by
symmetry to have the same principal components
(they are always allowed to differ in the crystallo-
graphic orientation of their axes), we introduce sub-
shells. This is illustrated on the right-hand side of
Figure 1. Here a so-called {100) dumb-bell [57] has
been introduced into an fcc lattice by taking out an
atom from its lattice site and inserting two atoms
along a {100) axis symmetrically to the vacant site. It
is obvious that the efg in shell 2 generated by the
introduction of a (100> dumb-bell will depend on
whether the nuclear sites lie on the {100 axis through

(28)

7
@)

&) @
® ~ O ©) ® ~ @ . ®
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Fig. 1. (001) planes of fcc structure. Left: Numbering of
shells in the neighbourhood of a vacant lattice site or a
substitutional foreign atom (denoted by 0). Right: Shells
around a {100) dumb-bell (denoted by 0). e denotes the
dumb-bell centre.

the defect centre, or on the <010) or {001 axes. Thus
in this case shell 2 splits into two subshells 2’ and 2".
The number of sites per defect in a given shell or
subshell are called the multiplicity of the shell or sub-
shell.

In the example of Fig. 1 the multiplicity of shell 2
is 6; the multiplicities of subshells 2" and 2" are 2
and 4, respectively. For defects with tetragonal point
symmetry centered at a lattice point with cubic sym-
metry the ratio of the multiplicities of the subshells is
always 1:2. We distinguish the two subshells by a dash
and double dash. Note, however, that in the present
case there are shells which do not split, viz. those
containing atoms lying on the {111 axes through the
defect centre. The shell nearest to the defect that satis-
fies this condition is shell 6.

The subshells may be characterized further accord-
ing to whether their efg tensors have two equal princi-
pal components or not. The first case corresponds to
n =0, the second case to 0 < x < 1, the limiting case
n = 1 being reached when one of the principal compo-
nents is zero. (The two others must then differ by a
factor —1.) The cases n = 0 may easily be found by
inspection, provided the displacement of the atoms
accompanying the introduction of a defect does not
reduce the point symmetry (i.e., the point symmetry
remains cubic for a vacancy and tetragonal for a
(100> dumb-bell even if the “lattice relaxation” (cf.
Sect. 2.2) is allowed for).

Table 1 summarizes the preceding discussion for the
two configurations of Figure 1. The first line gives the
shell number, the second one the radius of the shell
(neglecting lattice relaxation) in units of ao/\/§. In the
third line the multiplicities are listed for vacancies and
substitutional foreign atoms. The fourth lines give the
multiplicity for <100)> dumb-bells. The multiplicities
are printed in bold face if n = 0.
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Table 1. Radii of the different shells (neglecting lattice re-
laxation) around a lattice site in the fcc structures in units of
ao/\/2 and multiplicities for vacancies and substitutional
foreign atoms (cubic point symmetry) as well as for a (100}
dumb-bell (tetragonal point symmetry). Bold entries indicate
that the asymmetry n of the efg is zero by symmetry.

Shell number 0 1 2 3 4 5 6
Distance
from centre - 1 \/5 \/3 2 ﬁ \/8
Multiplicity

cubic - 12 6 24 12 24 8

tetragonal 2 448 2+4 8+16 4+8 8416 8

2.2 Results of Computations

Compared with the calculation of efg in perfect
crystals with non-cubic point symmetry of the nuclear
sites (e.g., hexagonal metals [58]), in the computation
of efg in the neighbourhood of defects two additional
problems have to be solved.

(i) The atomic positions around the defects are not
given a priori but must be found by computation.
This is primarily a problem of computation time,
since a large number of equilibrium conditions
have to be satisfied simultaneously.

(i) If problem (i) is tackled by the supercell method,
finite-size effects are invariably introduced. They
affect the results especially for shells near the su-
percell surface. This has to be taken into consider-
ation when the theoretical results are compared
with experimental data. The finite-size effects may
be estimated by performing computations for dif-
ferent supercell sizes and studying their conver-
gence as a function of the cell size.

In the following subsections we report on calcula-
tions of atomic positions and efg in the neighbour-
hood of atomic defects in Al and Cu. The supercell
calculations carried out at Stuttgart using either the
FLAPW or the pseudopotential method will serve to
illustrate the general principles outlined in Sect. 1 and
will allow us to perform a preliminary comparison
with experimental data. Reference will also be made to
the calculation by other authors based on the real-
space cluster method [59] or the GF-KKR approach
[60].

2.2.1 Results on Al

The supercell calculations on defects in Al to be
reported in what follows have all been performed for
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the ab-initio lattice constant. The efg in the neighbour-
hood of a monovacancy and the quadrupolar transi-
tion frequencies associated with them have been calcu-
lated using a supercell size of 124 atoms and the
plane-wave pseudopotential method. For this supercell
size the atoms of shell 7 lie on the surface of the super-
cell, i.e. halfway between two monovacancies. We may
thus relax the atomic positions in the first six shells, but
have to keep in mind that the relaxations of the atoms
close to the surface (say, those in shells 5 and 6) will
certainly be affected by the finite size of the supercell.

Table 2 gives the results of the positions of the
atoms in the neighbourhood of a monovacancy up to
shell 4. (The relaxation of the atoms in shell 5 has been
neglected, since the forces acting on them are very
small.) Using these atomic positions the quadrupolar
transition frequencies v, and v, of the first five shells
surrounding a monovacancy were computed neglect-
ing the core contribution to the efg. The results are
shown in Fig. 2 as square symbols.

In order to test the sensitivity of the computed tran-
sition frequencies to small changes of the atomic posi-
tions, the computation was repeated with the atoms of
shell 4 radially displaced from their relaxed positions
by 4-1073a, (circles in Figure 2). The comparison
between the two computations demonstrates that the
efg may depend very sensitively on the lattice relax-
ation. It is therefore not straightforward to obtain
accurate efg for higher shells.

Figure 3 shows the theoretical values for the transi-
tion frequencies v, using the relaxed positions of
Table 2 together with the experimental values obtained
after low-temperature electron irradiation [12, 15],
quenching from high temperatures [15], or cold-work
[15]. The assignment of the experimentally observed
frequencies to distinct shells is that of Konzelmann
et al. [15]. Compared to this, in the assignment sug-
gested by Minier et al. the frequencies of shell two and
four are interchanged. Experimental [15] and theoret-
ical values for the asymmetry #, are given in Table 3.

Table 2. Positions of the nuclei around a monovacancy in Al
in units of a, as computed with a 124-atom supercell and the
plane-wave pseudopotential method.

Shell Multiplicity  Unrelaxed  Relaxed position
position

1 12 1/2,1/2,0  0.4905, 0.4905, 0

2 6 0,0, 1 0, 0, 0.9990

3 24 1/2,1/2,1  0.4988, 0.4988, 0.9985

4 12 1, 1;0 0.9970, 0.9970, 0
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Fig. 2. Transition frequencies v, (upper curves) and v,
around monovacancies in Al as calculated with a 124-atom
supercell and the plane-wave pseudopotential method with
subsequent reconstruction of the true valence wavefunc-
tions. The core contribution has been neglected. The squares
have been obtained with the relaxed positions; the circles
result from an outward displacement of shell 4 by 4-107 3 q,,.
The lines serve only to guide the eyes.
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Fig. 3. Circles: Transition frequencies v, observed after low-
temperature electron irradiation, quenching, or cold-work of
Al. Squares: Values computed for a monovacancy using a

124-atom supercell and the plane-wave pseudopotential
method. The core polarization has been neglected.

Table 3. Experimental and theoretical values of # around a
monovacancy in Al The theoretical values were computed
with a 124-atom supercell and the pseudopotential method.

Shell 1 2 3 4 5
n 0.59 0 024 0.14 0.40
(theory)

0.67-0.71 =~0 0.24-041 0.11-041 -
(experiment)

The entry zero (0) means that # vanishes by symmetry.
For the first shell the experimental and theoretical val-
ues of the transition frequencies (see Fig. 3) and of n are
in good agreement. This leads to the conclusion that
the experimental lines at 405 and 310 kHz are due to
the nearest neighbours of monovacancies. The fact that
this pair of lines is observed not only after electron
irradiation and cold-work but also after quenching
from high temperatures supports this interpretation.

Ferreira and Frota-Pess6a have calculated the efg
acting on the nearest neighbours of a monovacancy in
Al using the real-space linear-muffin-tin-orbital ap-
proach [59]. Neglecting lattice relaxation (cf. Sect. 1.2)
they obtained v, = 350 kHz and n = 0.57. According
to our computations the lattice relaxation causes the
efg at the nearest-neighbour site to increase by a factor
~ 1.15. Hence the result of Ferreira and Frota-Pessoa,
as far as it goes, is in good agreement with ours.

For the shells 2, 3 and 4 a final statement cannot be
made at present time. On the one hand, the computed
values are subject to the uncertainties due to the finite
size effects discussed. On the other hand, the assign-
ment of Konzelmann, although similar to that of
Minier [12], should not be considered definitive.

The best check of the reliability of the methods
described in Sect. 1 is to compute the efg around
substitutional foreign atoms and to compare them
with experiments on dilute alloys. In this case the
assignment of the measured transition frequencies to
distinct shells is much easier since one can be sure that
all lines in the NQDOR spectrum are due to only one
atomic defect, namely the substitutional foreign atom.
Using a small supercell of 16 atoms only, FLAPW
calculations have been carried out on substitutional
vanadium and iron atoms in Al. Since for this super-
cell size the second shell already lies on the supercell
surface, the only atomic positions that could be re-
laxed were those in the first shells surrounding the
foreign atoms. For comparison, an FLAPW calcula-
tion with a supercell of 15 atoms has been performed
on a monovacancy, too. The results of these two cal-
culations are given in Tables 4 and 5.

As may be seen from Table 4, the nearest-neighbour
relaxations are about the same for vanadium and for
monovacancies but are substantially larger for iron.
The comparison with Table 2 shows that the small
supercell calculation underestimates the relaxations,
but only moderately so.

Table 5 compares the calculated transition frequen-
cies v, and v, and the corresponding n with the exper-
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Table 4. Relaxation of the first shell around the substitu-
tional foreign atoms V and Fe, and a monovacancy in Al
as computed for 16-(15-)atom supercells by the FLAPW
method.

Unrelaxed Relaxed positions
position

\% Fe monovacancy

1/2,1/2,0  0.492,0.492,0 0.486, 0.486, 0 0.492, 0.492,0

Table 5. Quadrupolar transition frequencies of the first shell
surrounding the substitutional foreign atoms V and Fe, and
the monovacancy in Al as computed for 16-(15-)atom super-
cells by the FLAPW method. The core contribution has been
calculated with the “one-shot approximation”. In the respec-
tive third lines the experimental value for 7 and the theoret-
ical value for V., have been used.

n V2 vy Ve
[kHZ] [kHZ] Vz\;al+lal
\Y theory 02 1220 650 +0.08
experiment [11] 012 1250 635
theory with
experimental 5 0.12 1230 620
Fe theory 0.7 470 360  +0.30
experiment [11] 0.57 500 345
theory with
experimental 7 0.57 480 330
mono- theory 0.9 390 380 —0.15
vacancy experiment [12,15] 0.69 405 310
theory with
experimental 7 069 415 315

imental values [11, 12, 15]. The third line in each entry
gives the frequencies v, and v, if they are calculated by
combining the computed efg with the experimentally
determined asymmetry. Considering the small super-
cell size used, the agreement between the experimental
and theoretical frequencies may be called acceptable.
By contrast, the calculated n values are much too
large; so one should always use experimental asym-
metries if small supercells are employed.

Table 5 also gives the core contributions (from 1s,
2s, and 2p electrons) to the large component (V,,) of
the efg acting on the nearest-neighbour nuclei as
calculated by the “one-shot approximation” of
Sect. 1.3. In order to test the reliability of this approx-
imation for substitutional iron the computation of the
aspherical core-electron density was included in the
self-consistency cycle of the FLAPW method. This
computation yielded values for v, and # very similar
to those of the “one-shot approximation”, namely
v, =460 MHz and n = 0.7. Hence, the reaction of the
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valence electrons to the asphericity of the core-elec-
tron density is completely negligible. Figure 4 shows
indeed that the | =2, m =0 component of the core-
electron density,

nSo (r) = [ n(r) Y5 (A Q, (29)

which dominates the core contribution to the efg, see
(26), is small compared with the corresponding com-
ponent of the valence-electron density. Because of the
weighting of the core-electron density in (26) by the
factor r~ 3, the core contribution to the efg is neverthe-
less important but apparently handled well enough by
the the “one-shot approximation”. Furthermore, the
additional contribution of the 2p electrons of Al of the
efg acting on the nearest-neighbour site of a substitu-
tional iron atom has been considered using the local-
orbital method implemented in the new FLAPW code
WIENO9S [56]. This calculation gave v, =440 kHz
and n = 0.9. With the “one-shot approximation” we
obtain v, = 480 kHz and n = 0.8 if only the contribu-
tions of the 2p core electrons and of the valence elec-
trons are taken into account.

The efg surrounding a {100) dumb-bell — the stable
self-interstitial configuration in fcc metals — have been
calculated for a 65-atom supercell using the FLAPW
method. Here shell 4 lies on the surface of the super-
cell. The relaxed atomic positions up to shell 3 are
shown in Table 6. Table 7 gives the transition frequen-
cies computed using these positions as well as the
contribution of the core electrons (1s, 2s, and 2p) to
the efg as determined by the “one-shot approxima-
tion”. The fact that this contribution comes out rather

610
5 n',(r) valence electrons
4107} o----- I n ,,(r) core electrons
[1/a.u.]

2107

0.0 0.5 1.0 1.5 2.0 2.5
r [a.u.]

Fig. 4. =2, m =0 component of the valence and core-
electron density times r? at the nearest-neighbour atoms of
substitutional iron in Al (1 a.u. = 0.529 A).
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Table 6. Positions of the nuclei surrounding a {100) dumb-
bell in Al in units of a, as computed with a 65-atom supercell
and the FLAPW method.

Shell Multi- Unrelaxed  Relaxed positions
plicity positions

0 2 0,0,0 0, 0, 0.292

(dumb-bell

atoms)

1 4 1/2,1/2,0  0.470, 0.470, 0

1” 8 0,1/2,1/2 0,0.564, 0.534

2 2 0,0, 1 0, 0, 0.9%4

2" 4 1,0,0 1.004, 0, 0

3 8 1/2,1/2,1  0.503, 0.503, 1.012

3" 16 1, 1/2,1/2  1.003, 0.507, 0.494

Table 7. Transition frequencies v, and v,, asymmetry #, and
core contribution to the efg for a (100) dumb-bell in Al
as computed with a 65-atom supercell and the FLAPW
method.

Shell Multi- n v, v, sz""/
plicity [kHz] [kHz] yaleiat
0 2 0 560 280 —0.24
1 4 0.4 460 280 —0.05
1” 8 0.2 1760 920 +0.04
2 2 0 300 150 +0.17
2" 4 =3 210 200 —0.11
3 8 0.8 350 300 +0.08
3" 16 0.2 500 270 +0.09

large for the efg acting on the dumb-bell atoms has to
be considered with caution for two reasons:

1. For small distances from the nucleus the aspheric-
ity of the core-electron density is not small com-
pared with the asphericity of the valence-electron
density, hence it should be included in the self con-
sistency cycle.

2. Since the two “dumb-bell atoms” are separated by
about 0.6 a, only, their 2p orbitals overlap. This
means that these orbitals should not be treated as
“core states” in the sense of the general theory of
Sect. 1, as was done so far.

Up to now, none of the calculated dumb-bell fre-
quencies have been observed experimentally. This
may have several reasons. There will almost certainly
be an intensity problem because of the small multiplic-
ity of some of the subshells, particularly so for shell 0
and subshell 2" which have multiplicity 2. The smaller
frequencies may overlap not only with other self-inter-
stitial frequencies but also with vacancy frequencies,
since self-interstitials are always generated together

with a comparable density of vacancies. When search-
ing for the dumb-bell lines it should be kept in mind
that those associated with the Oth shell are uncertain
because of the problems discussed above, and that
those of the higher shells may be affected by finite-size
effects.

2.2.2 Results on Cu

The supercell calculations reported in this subsec-
tion have all been performed by means of the FLAPW
method. The transition frequencies given pertain to
the isotope ®3Cu; those of ®3Cu are 7.3% lower.

Table 8 gives the relaxed positions of the atoms in
the first shell around various substitutional foreign
atoms as calculated with 16-atom supercells. The re-
laxations of the nearest neighbours of a monovacancy
as given by the corresponding calculation (15-atom
supercell) are negligibly small. The transition frequen-
cies in shell 1 computed from these results are listed in
Table 9 using the experimentally determined lattice
parameters or (in some cases) the smaller values fol-
lowing from ab-initio LDA calculations. The entries in
the last two columns are those observed transition

Table 8. Positions of the nuclei in the first shell surrounding
substitutional Be, Ni, Pd, and Pt atoms in Cu in units of a,
as computed with a 16-atom supercell and the FLAPW
method.

Unrelaxed Relaxed positions
position
Be Ni Pd Pt
1/2,1/2,0 0.495, 0.498, 0.507, 0.509,
0.495,0 0.498,0 0.507,0 0.509, 0

Table 9. Transition frequency v, (for ®*Cu), asymmetry 7,
and core contribution to the efg for the first shell surrounding
substitutional foreign atoms and a monovacancy in Cu as
comﬁ)u(;ed with a 16-(15-)atom supercell and the FLAPW
method.

Ab-initio  Experi- v Experi-

a, mental a, yeat ment

ve [MHz] v, n Ve n

[MHz] [MHz]

Be 2.8 2.4 02 -003 20 -
Ni - 1.3 0.5 +0.25 1.1 0.2
Pd 3.6 3.1 03 —0.06 32 0.2
Pt - 43 05 —=0.09 47 -
mono-
vacancy 3.6 3.0 0.1 —0.19 34 -
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frequencies [3, 5, 15] that are closest to the calculated
ones and experimental values for asymmetry, which
have been determined by NMR [62]. Furthermore,
Table 9 contains the calculated asymmetries and the
ratios of the core contributions (1s—3p electrons) to
the sum of the valence-electron and lattice contribu-
tions.

Considering the smallness of the supercells used, the
agreement between the measured and the computed
frequencies is quite good, particularly so if for the
latter the experimental a, are used. However, to some
extent this agreement may be fortuitous. The calcu-
lated asymmetries at the nearest-neighbour nuclei of
substitutional Ni or Pd atoms are — as for the substi-
tutional foreign atoms in Al (see Table 5) — too large
compared with the experimental values. A further
error of limited but unknown magnitude comes in
because of the uncertainty in the nuclear quadrupole
moments of ®*Cu and ®*Cu discussed in the Introduc-
tion. This error is systematic, however, and may be
corrected by adjustment if a large enough body of
accurate computations and reliable experimental data
becomes available.

As Table 9 shows, the effect of the core electrons on
the efg can be quite large. This has been studied in
more detail for the case of substitutional Ni. Although
here the “one-shot approximation™ gave a rather large
core-electron contribution, the inclusion of the as-
pherical core-electron density in the self-consistency
cycle did not change the V,, and # values. As Fig. 5
shows, the (2,0) component of the core-electron den-
sity is indeed much smaller than that of the valence-
electron density. This demonstrates that in the present
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case it was justified to neglect the influence of the
aspherical core-electron density. In addition, the so-
called local-orbital approach [56] was applied to the
3p electrons. This gave v, = 1.2 MHz and = 0.6, in
good agreement with the result v, =1.2 MHz and
n = 0.5 of the simpler “one-shot approximation” treat-
ment of the 3p electrons.

For the monovacancy an additional calculation
was performed with a 63-atom supercell. In this case
shell 4 lies on the cell boundary, so that the atomic
positions up to shell 3 may be relaxed. However, the
forces acting on the shell-3 atoms come out so small
that their relaxation could be neglected. The relaxed
positions for the first two shells are given in Table 10.
Note that the displacements at the next-nearest neigh-
bour atoms, while still small (3.6 - 102 a,), are much
larger than those of the nearest neighbours of the
vacant site. This may mean that in order to obtain the
displacement field around a monovacancy in copper
accurately, we may have to use larger supercells.

The quadrupolar transition frequencies of the nu-
clei in the first three shells surrounding a monova-
cancy are listed in Table 11 together with the asym-
metries and with the core contributions to the efg as
calculated by the “one-shot approximation”. For the
first shell the transition frequencies obtained with the
15-atom or the 63-atom supercell are in reasonable
agreement; they differ only by approximately 10%.
The computed asymmetry of the efg tensor acting on
the nuclei in the first shell is substantially smaller than
in the case of Al.

Table 10. Positions of the nuclei surrounding monovacan-
cies in Cu in units of a, as computed with a 63-atom supercell
and the FLAPW method.

210 e T — Shell M.u!ti- Unr_e.laxed Relg)ged
. 20 plicity positions positions
----- ' ncm(r) core electrons
) 1 12 1/2,1/2,0 0.4992, 0.4992, 0
- 2 6 0,0,1 0, 0, 0.9964
k10 3 24 1/2,1/2, 1 0.500, 0.500, 1.000
[1/a.u.]

0 Table 11. Transition frequency v, (for 93Cu), asymmetry 7,
and core contribution to the efg for a monovacancy in Cu
as computed with a 63-atom supercell and the FLAPW
method.

-110"
0.0 05 1.0 15 2.0 Shell  Multiplicity 7 vy [MHz]  pore/peieia
s i 12 02 33 0.16
Fig.5. I=2, m=0 component of the valence and core- > g 0 0.4 :0263
electron density times r* at the nearest-neighbour atoms of 3 24 0.0 0.5 +0.11

substitutional Ni in Cu (1 a.u. = 0.529 A).
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The two calculations of the quadrupolar transition
frequencies v, associated with monovacancies in Cu
[59, 60] disregard the lattice relaxation. This may not
be a too serious approximation in the present case but
is in general not permitted. In their real-space linear-
muffin-tin-orbital calculation Ferreira and Frota-Pes-
s0a [59] neglected, in addition, the core contribution
to the efg. The fact that they obtained n ~ 1, ie. a
much higher asymmetry than predicted by the
FLAPW method, may point towards a basis weakness
of the linear-muffin-tin-orbital method in combina-
tion with the ASA for the calculation of efg tensors in
solids. Correcting for this high » value reduces the
transition frequency v, = 4.3 MHz computed by Fer-
reira and Frota-Pess6a [59] to about 3.8 MHz. If we
apply further the correction for the neglected core
contribution as given in Table 11, we obtain finally
v, = 3.2 MHz, which is in satisfactory agreement with
the FLAPW calculation for the 63-atom supercell.

The calculation of Drittler etal. [60], using the
KKR-GF method (see Sect. 1.2), give v, = 5.6 MHz
if we replace the quadrupole moment Q(°3Cu)
=160-10"3' m? by the value 220 -1073! m? used
through this paper (cf. Introduction).

Transition frequencies that might be attributed to
the first three shells surrounding monovacancies in Cu
have been found after low-temperature electron and
proton irradiation [3, 5, 13, 15] as well as after cold-
work [3, 15]. However, none of these lines have been
observed after quenching of liquid or solid Cu [15, 16],
i.e. under conditions at which a fairly large concentra-
tion of monovacancies should be frozen in. The pres-
ent situation must therefore be considered as incon-
clusive.

The results of a 65-atom-supercell calculation of the
relaxed atom positions and of the efg in the neigh-
bourhood of {100) dumb-bells are shown in Ta-
bles 12 and 13. It is remarkable that the positions of
the nuclei are in excellent agreement with the posi-
tions predicted by an early calculation [61] based on
a rather sophisticated model potential. In particular,
the separation between the two dumb-bell atoms was
predicted to be 0.60a,, which agrees well with the
value 0.58 a,, in Table 12. The core contribution to the
efg acting on the two “dumb-bell nuclei” (zeroth shell)
should — for the same reasons as in the case of Al — be
considered with some caution.

The comparison with the experimentally observed
lines [3, 5, 13] encounters difficulties analogous to
those discussed in Sect. 2.2.1. Moreover, of the shells

Table 12. Positions of the nuclei in the neighbourhood of a
<100» dumb-bell in Cu up to shell 3 in units of a, as com-
puted with a 65-atom supercell and the FLAPW method.

Shell Multi-  Unrelaxed  Relaxed positions
plicity positions

0 2 0,0,0 0, 0, 0.289

(dumb-bell

atoms)

1 4 1/2,1/2,0  0.476,0.476, 0

1” 8 0,1/2,1/2 0,0.565, 0.530

2 2 0,0, 1 0, 0, 0.997

2 4 1,0,0 1.007, 0, 0

3 8 1/2,1/2,1  0.506, 0.506, 1.005

3" 16 1,1/2,1/2  1.004, 0.508, 0.494

Table 13. Transition frequency v, (for 63Cu), asymmetry 7,
and core contribution to the efg for a {100) dumb-bell in Cu
as computed with a 65-atom supercell and the FLAPW
method.

Shell ~ Multiplicity n v, [MHzZ] pcore el +lat
0 2 0 0.5 —1.40
iy 4 0.9 1.3 —0.15
1* 8 03 69 +0.09
2 2 0 il —0.17
2" 4 05 1.3 —0.20
3 8 07 05 —0.29
3” 16 0.3 2.9 +0.15

with high multiplicity, the predicted v, for subshell 1”
lies outside the range covered by the experiments
(20 kHz to 6 MHz in [3]), whereas those of the sub-
shells 3" and 3” must be considered as very uncertain
because of finite-cellsize effects. It is therefore too early
to say to what extent contact has been made between
experiment and theory. It is clearly necessary to in-
crease the cell size in order to obtain reliable estimates
for the field gradient in subshell 3’ and in particular in
subshell 3” and to extend the search for transition
frequencies of subshell 1” to higher frequencies.

3. Summary

In combination with the supercell technique the
FLAPW method as well as the plane-wave pseudopo-
tential method with subsequent reconstruction of the
correct valence-electron density have proved to be
powerful tools for the ab-initio calculation of electric
field gradients in the neighbourhood of atomic defects
in metals. This is demonstrated by the agreement be-
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tween experiment and theory for the quadrupolar
transition frequencies of the nearest-neigbour nuclei
of several substitutional foreign atoms in Al and Cu.
The investigation also showed that the influence of the
core electrons on the electric field gradient can be very
large and should therefore not be neglected. In Al the
calculated transition frequencies of the nuclei in
shell 1 around a monovacancy and the largest experi-
mentally observed frequencies are in excellent agree-
ment. This, together with the fact that these lines are
also present in the NQDOR spectrum after quenching
Al samples from high temperatures, leads to the con-
clusion that the lines originate from the nearest-neigh-
bour nuclei of monovacancies. The assignment of the
other experimentally observed lines to distinct shells
around specific atomic defects is not possible at pres-
ent. In Cu there seems to be good agreement between
the calculated transition frequency of the nearest-
neighbour nuclei around a monovacancy and the
highest transition frequency observed in the NQDOR
spectrum after electron and proton irradiation as well
as after cold-work. The tentative attribution of this
transition to the nearest neighbours of monovacancies
is in conflict with the fact that the line has not been
observed after quenching Cu from high temperatures,
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