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The splittings of nuclear energy levels caused by the electric field gradients acting on the quadru-
pole moments of nuclei in the neighbourhood of atomic defects in cubic metals may serve as 
"fingerprints" providing us with a unique characterization of these defects. In favourable cases the 
N Q D O R technique (nuclear quadrupole double resonance) permits sensitive measurements of these 
splittings with good resolution. The present paper outlines the status of the ab-initio calculation of 
electric field gradients with emphasis on the theoretical basis (density functional theory with local 
density approximation) and on the techniques required for handling the specific problems associated 
with defects. Recent work by the supercell approach on atomic defects in Al and Cu, making use 
either of the full-potential linearized augmented-plane-wave method or of the ab-initio pseudopo-
tential method, are reported and compared with experiments. The excellent agreement between 
experiment and theory for the field gradients acting on the nearest-neighbour nuclei of monovacan-
cies in Al demonstrates the reliability and the potential of the theory. 
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Introduction 

Quadrupolar splitting of the energy levels of nuclei 
possessing electric quadrupole moments Q occurs 
only if the traceless symmetric rank-two tensor of the 
gradient of the electric field, V, does not vanish at the 
nuclear sites. This tensor is zero by symmetry if the 
nuclear sites have cubic (or isotropic) point symmetry. 
As a consequence, in perfect crystals with face-cen-
tered cubic (Al) or body-centered cubic (A2) structure, 
but also in perfect NaCl-type (Bl) or CsCl-type (B2) 
crystals as well as others, there will be no quadrupolar 
level splittings, irrespective of the magnitude of Q. Any 
perturbation of the perfect lattice structure, however, 
destroys the cubic point symmetry at the lattice sites 
in its immediate neighbourhood. Provided the nuclei 
carry a sufficiently large electric quadrupole moment, 
this gives us the possibility - at least in principle - to 
study such perturbations, in the following called "de-
fects", by nuclear magnetic resonance (NMR) mea-
surements. This was recognized and worked out 
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rather fully quite early in the development of N M R , as 
may be seen, e.g., from the review by Bloembergen [1], 
At that time the only experimental technique available 
was to observe, by N M R in large applied magnetic 
fields, the transitions between the quadrupolar-split 
Zeeman levels of the nuclei. It was realized [1] that 
because of its low sensitivity this technique required 
defect concentrations ( > 10" 3) that cannot normally 
be achieved with intrinsic atomic defects such as va-
cancies and self-interstitials. Another disadvantage of 
the "classical" method of studying the quadrupolar 
effects due to defects in cubic crystals by measuring 
the splitting of the Zeeman N M R levels is that well 
resolved transitions are obtained only if the electric 
field gradients (efg) at the nuclei are fairly large. This 
condition is only rarely satisfied for intrinsic atomic 
defects in metals. The early experimental work on 
quadrupolar effects due to crystal defects concen-
trated therefore entirely on dislocations (introduced 
by extensive plastic deformation) and on foreign 
atoms on regular lattice sites (in the case of metals: 
dilute alloys). In these cases the fraction of the nculei 
experiencing sufficiently large efg could be made large 
enough to permit quantitative investigations. 

The situation began to change when Redfield [2] 
developed the nuclear quadrupole double resonance 
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( N Q D O R ) technique which, when applicable, gave 
not only much higher sensitivity than standard N M R 
absorption measurements but in addition improved 
the resolution substantially, thus allowing level split-
tings to be detected down to the so-called dipolar 
line-width (typically a few 104 Hz). The N Q D O R 
technique combines signal detection by conventional 
N M R in a high magnetic field with quadrupole reso-
nance (NQR) in zero magnetic field. It has been de-
scribed in detail at the Xl l th International Sympo-
sium on Nuclear Quadrupole Resonance [3], with 
special emphasis on the N Q D O R equipment built up 
at the Max-Planck-Institut für Metallforschung in 
Stuttgart during the last decade [3, 4]. 

From the point of view of metal physics, the 
N Q D O R technique has the weakness that it is appli-
cable only to a limited number of metals (for details 
see [3]). So far N Q D O R measurements have been 
reported on the face-centered cubic (fee) metals 
aluminium and copper. For many years the experi-
ments concentrated on dilute alloys of Cu [3, 5] and Al 
[6-11]. The first reports on N Q D O R experiments 
involving intrinsic atomic defects in metals were those 
on electron-irradiated Al by Minier, Andreani, and 
Minier [12] in 1978 and on electron-irradiated Cu by 
Minier, Minier, and Andreani [13] in 1980. More re-
cently, the N Q D O R work on intrinsic atomic defects 
in Cu and Al has been considerably extended by the 
Stuttgart group. Examples are the study of Cu that 
had been electron-irradiated at 90 K [3, 14] or at 20 K 
[15], of Al electron-irradiated at 90 K [15], of dilute 
CuBe alloys that were electron-irradiated at 90 K [3], 
of Cu cold-worked at 77 K or proton-irradiated at 
140 K [3, 14], of Cu rapidly quenched either from the 
melt [16] or from the solid-state near the melting point 
[15], and of Al quenched from the solid-state [15]. 

The efg generated by atomic defects in metals may 
serve as fingerprints that allow us to identify a given 
type of defect under quite different experimental 
conditions. In contrast to the earlier survey [3], 
which emphasized the experimental technique and 
contained only a brief overview of the calculation of 
efg introduced by point defects in cubic metals, the 
present review concentrates on ab-initio computa-
tions of these quantities. The ultimate goal of the 
program going on at the Max-Planck-Institut für 
Metallforschung in Stuttgart is to assign, with the 
help of theory, the observed quadrupolar transition 
frequencies to well-defined defects. In the case of in-
trinsic defects this requires an "interactive" approach 

involving computat ions as well as a wide range of 
experiments. 

The computat ions necessitate various approxima-
tions. Among them, the most difficult to control is the 
so-called local-density approximation (LDA) within 
the framework of the density functional theory (see 
Sect. 1.2). The comparison between computed and ex-
perimentally determined efg allows us to test the 
validity and reliability of the theory. In such a com-
parison two major problems may arise. 

(i) Whereas the theory provides us with numerical 
values of the electric field gradients at the nuclei, 
the experiments give us transition frequencies. Re-
lating these quantities to each other requires 
knowledge of the electric quadrupole moments of 
the nuclei and of the asymmetry q of the efg ten-
sor. 

(ii) A critical test of the theoretical predictions is pos-
sible only if we can be sure that computations and 
measurements pertain to the same defects. While 
this present rarely a serious problem for dilute 
alloys, the demonstration that the requirement is 
satisfied is much more difficult for intrinsic point 
defects. The reason is that in irradiation or cold-
working experiments always more than one type 
of defect is generated. Even under the somewhat 
simpler condition of metals that have been rapidly 
quenched f rom high temperatures, we have to al-
low for the possibility that a substantial fraction 
of the quenched-in vacancies is present not as 
monovacancies but as divacancies or larger ag-
glomerates. 

The accuracy with which the nuclear quadrupole 
moment Q is known may vary substantially from nu-
clide to nuclide. Examples are provided by the nu-
clides with which the present paper is concerned, viz. 
27A1, 6 3 Cu, and 6 5 Cu. 

According to Sundholm and Olsen [17] the quadru-
pole moment of 2 Al is 

<2(27A1) = (140.3 ± 1.0) • 1 0 ~ 3 1 m 2 . (1) 

The authors arrived at this value by combining the 
measured nuclear quadrupole coupling constant, 
eV,zQ/h (e = elementary electric charge, h = Planck's 
constant), with the efg at the nucleus of Al (3 s2, 3p; 
2P3 2) atoms as obtained by ab-initio multiconfigura-
tional Hartree-Fock calculations. The uncertainty in 
(1) is claimed to be less than 1%, i.e. smaller than the 
computat ional errors in the calculation of the field 
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gradients reported in this paper. This means that for 
the comparison of N Q D O R experiments on Al with 
the theory the uncertainty of Q is negligible. 

The situation is different for Cu. While the ratio of 
the quadrupole moments of the stable Cu isotopes, 

Q ( 6 3 C u ) / Ö ( 6 5 C u ) = 1.079 (2) 

is known with high accuracy f rom the N Q D O R work 
of Minier and Minier [5], the absolute Q values are 
much less certain. The value recommended by Pyykkö 
and Li [18], which comes from the X-ray measurement 
of the hyperfine structure of mesonic Cu atoms, 

Q ( 6 3 C u ) = - (220 ± 15) • 1 0 ~ 3 1 m" (3) 

has an uncertainty of about 7%. This has to be taken 
into account in the comparison between experiment 
and theory. 

For a given defect, the asymmetries at the various 
sites, defined as 

1-=(VXX-VJ/V2Z, (4) 

where the principal components Vu of the efg tensor 
are chosen in such a way that 

> (5) 

should come out of the computat ions. With regard to 
the comparison theory - experiment the situation is 
again quite different for Al and Cu. In N Q D O R exper-
iments on 27A1 (spin 5/2) r] may be deduced f rom the 
ratios v2/vl of the transition frequencies of the 
| m | = 3 / 2 ^ + | m| = 5 / 2 and the | m | = l/2<->| m | = 3 / 2 
transitions. Since the nuclides of natural Cu, 6 5 C u and 
6 3 Cu, have both spin 3/2, in zero magnetic field they 
give rise to one transition (l/2<->3/2) only, with fre-
quency [19] 

eQIK ' " v = 
2 h 

1 + (6) 

F r o m (6) the separate determination of | Vzz | and r\ is 
not possible. The separation may become possible by 
means of the nutation technique [20]; however, so far 
this technique has not been applied to N Q D O R . 

The general theory involved in the calculation of efg 
in solids is treated in Sect. 1. Subsect. 1.2 gives an 
outline of ab-initio electron theory with special em-
phasis on the approximations required for practical 
computat ions. Subsect. 1.3 focuses on the computa-
tion of the efg tensor with special regard to the influ-
ence of the core electrons on the efg. Sect. 2. reports 
the results of recent calculations of the efg generated 

by intrinsic atomic defects or substitutional foreign 
a toms in Al and Cu. The results will be compared with 
the numerical values obtained by other theoretical 
approaches on the one hand, and with N Q D O R mea-
surements on the other hand. Finally, Sect. 3. summa-
rizes the conclusions that may be drawn from the 
present work. 

1. Ab-initio Calculation of Electric Field Gradients 
Introduced by Atomic Defects 

1.1 Definition of the efg Tensor 

The traceless symmetric tensor of the electric field 
gradients (efg) at a nucleus, V = (V^), is defined as 

S2<2> 
vu = 

Ö X ; 8 X j 

where 

r — r 
d r' 

(7) 

(8) 

is the electrostatic potential and £>(»•) the total ground-
state charge density of the system. The subscript "nu-
cleus" indicates that all derivatives have to be taken at 
the position of the nucleus considered, which in the 
following will be taken as the origin of our coordinate 
system. Inserting (8) into (7) gives us 

(9) 

According the (9) the part of Q (r) that has spherical 
symmetry a round the nucleus does not contr ibute to 
V. Because of the singular behaviour of the expression 
in parenthesis at the origin, the non-spherical contri-
but ion to the total charge density of the system must 
be determined with high accuracy in order to calculate 
the efg tensor reliably. Fo r solids, the appropr ia te tool 
to do this is ab-initio electron theory. Since the 
N Q D O R experiments are carried out at low tem-
peratures (typically at about 2 K) we may confine 
ourselves to ground states. 

1.2 Ab-initio Electron Theory 

The full description of the ground state of a solid 
requires the knowledge of its many-body wavefunc-
tion, which depends on the coordinates of all nuclei 
and electrons. In practice it is impossible to solve the 
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many-body Schrödinger equation of a solid without 
approximations. As a first simplifying approximation 
use is made of the Born-Oppenheimer approximation 
[21, 22], It rests on the fact that the electron mass 
is much smaller than the nuclear masses. Therefore 
the electrons are able to follow the motions of the 
nuclei virtually instantaneously. As a consequence, the 
positions of the nuclei, /?„, may be considered as 
classical parameters. Then the electrons obey a many-
body Schrödinger equation that depends on these 
parameters. The Born-Oppenheimer approximation, 
also known as adiabatic approximation, is well estab-
lished in molecular or atomic physics as well as in 
solid state physics. In the present context its use is not 
critical [22]. 

The most important tool to calculate the ground-
state properties of an extended electronic system such 
as that of a solid is the density-functional theory (DFT) 
of Hohenberg and Kohn [23], It is based on the fact 
that the ground-state properties (e.g., total energy, efg) 
of a system of interacting electrons in an external 
potential (usually the Coulomb potential of the nuclei 
at the positions R J are completely determined by the 
ground-state electronic density, ne (r). The total energy 
of the system, E, and all other ground-state properties 
are functionals of ne(r). The correct ground-state den-
sity is the density that minimizes the total-energy 
functional, E = E [n j . Kohn and Sham [24] showed 
that it can be obtained by solving self-consistently a 
single-particle Schrödinger equation containing an ef-
fective potential. This equation is called Kohn-Sham 
equation; the solutions are the so-called Kohn-Sham 
orbitals. 

Unfortunately, the preceding recipe of how to ob-
tain the ground-state electronic density has the char-
acter of a proof of existence, since the true form of 
E [rcc] is only incompletely known. We may - still rig-
orously - subdivide E[ne] according to 

E [ne] = Tel [ne] + £ H [we] + £ e x t [ne] 4- £ x c [nc] (10) 

into the kinetic energy functional of noninteracting 
particles, Tcl [ne], with the same density ne as the inter-
acting electrons, the so-called Hartree functional 
£ h [ n j of the Coulomb interaction between the elec-
trons, the functional Eext [ne] of the Coulomb interac-
tion between the electrons and the nuclei, and the 
exchange-correlation (xc) functional Exc [Mc]. It is this 
last term that remains unknown. Its exact form, if 
known, could be very complicated. The usefulness of 
D F T depends therefore critically on whether we can 

find (a better expression may be "guess") a sufficiently 
accurate approximate expression for Exc[ne]. Within 
the framework of the D F T the most frequently used 
approach to the exchange-correlation problem is the 
so-called local-density approximation (LDA) [24], In 
the LDA, the xc functional is approximated by 

£xc K W M ' K c M ' ' ) ) ^ , (11) 
where exc (ne) is the xc density per electron of a homo-
geneous electron gas. exc (ne) can be determined with 
the help of more elaborate many-body calculations 
(see, e.g., [25]). 

As already mentioned in the Introduction, among 
the approximations employed in the present approach 
to the ab-initio calculation of ground-state physical 
properties of condensed matter LDA is the one that is 
most difficult to control. By way of example this may 
be seen by comparing the lattice constants as calcu-
lated ab-initio using LDA with the measured ones. 
Invariably they come out too small, in Li and Na by 
4%, in Cu by 2%, and in Al by 1%. 

The literature contains various attempts to improve 
on the local density approximation (e.g., the general-
ized gradient approximation (GGA) [26]), but since 
their domains of usefulness have not yet been clearly 
established (see e.g., [27]), they will not be used in the 
present paper. A point clearly in favour of the G G A is 
that for Al and Cu the lattice constants calculated 
ab-initio are in better agreement with the measured 
ones than those obtained from LDA. If the same lat-
tice constants are used in LDA and GGA computa-
tions, the results for the efg differ only slightly, how-
ever. 

With the help of D F T and LDA the original many-
body problem has been reduced, though only approx-
imately so, to the solution of a single-particle 
Schrödinger equation, 

h2 

2 m„ 
A + 0 e f f ( r ) •Pi(r) = ei , 

(i = 1, 2 , . . . , Ne) (12) 

(me = electron mass) for all N e electrons of the system, 
containing an effectice potential, <£eff(r), that is given 
by 

* f f (r) = <Pexi(r) + <PH(r) + <Pxc(r). (13) 

In (13) <£„,(»*) denotes the Coulomb potential of the 
nuclei, 

nAr') 
<PH(r) = e' dr' (14) 
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the so-called Hartree potential, and 

the exchange-correlation potential. 4>xc accounts for 
classical (e.g., Coulomb correlations between the elec-
trons) as well as quantum-mechanical (e.g., Pauli's ex-
clusion principle) many-body effects, which cannot be 
covered by a single-particle Schrödinger equation. In 
LDA it reads 

* « ( ' ) = - r - [ » . W s « K ('))]• (16) d ne 

Since the Kohn-Sham orbitals f,(i") are normalized to 
one, j | Vi (r) | 2 dr — 1, the electronic density of the sys-
tem is obtained in the usual way through 

n e ( r ) = "t | y , ( r ) | 2 . (17) 
i = 1 

The equations (12), (13), and (17) are called Kohn-
Sham equations. They may be solved self-consistently 
to give us single-particle energies e; and Kohn-Sham 
orbitals f , (r) for all Ne electrons of the system as well 
as the electronic density ne (r) by starting with a suit-
ably chosen effective potential <Peff (r), feeding the elec-
tronic density ne(r) derived from it back into (14) and 
(16) to obtain an improved effective potential (13), and 
repeating this procedure until ne (r) no longer changes 
significantly. The practical side of this procedure will 
be briefly discussed below. 

According to Bloch's theorem [28], in periodic 
structures the Kohn-Sham orbitals are Bloch waves. 
This has the practical consequence that if suffices to 
solve the Kohn-Sham equation (12) on a grid of sam-
pling points in the first Brillouin zone of the structure. 
However, the perturbation of the perfect lattice struc-
ture by an atomic defect destroys the periodicity of the 
crystal. Hence Bloch's theorem is no longer valid. One 
way of dealing with this problem is to use the so-called 
supercell method. 

The supercell method considers an array of periodi-
cally arranged atomic defects and applies Bloch's the-
orem to this periodicity rather than to that of the 
perfect crystal. The crystal is thus made up of "super-
cells", each of which contains one defect. If, as in the 
present case, we wish to study the properties of iso-
lated defects, the supercell size should be so large that 
defect-defect interactions are negligible. (This is the 
case if a further increase of the supercell size leaves the 

results unchanged.) In practice, this can only rarely be 
achieved. One has therefore to pay attention to "finite-
size" effects and correct for them if necessary and pos-
sible. 

The methods for obtaining numerical solutions of 
the Kohn-Sham equations differ in the choice of the 
basis functions into which the Kohn-Sham orbitals of 
the valence electrons are expanded. In the work to be 
reported in Sect. 2.2 the full-potential linearized aug-
mented-plane-wave (FLAPW) method [29, 30] and the 
plane-wave pseudopotential method (see, e.g., [31]) 
have been used. 

In the F L A P W method the wavefunctions of the 
valence electrons are expanded in plane waves which 
in the vicinity of the nuclei are replaced ("augmented") 
by atomic wavefunctions. The atomic wavefunctions 
are the solutions of the spherically averaged Kohn-
Sham equation (12) for a suitably chosen energy. The 
augmentation of the plane waves is necessary because 
the Kohn-Sham orbitals vary rapidly near the nuclei 
and are therefore in this region not suited for an ex-
pansion in plane waves. 

The basic idea of the pseudopotential method is to 
find a transformation which eliminates both the 
closed-shell core states and the rapid variations in the 
valence states in the core region out of the formalism. 
Its roots go back to Hellmann and Kassatotschkin 
[32, 33]. In their "combined approximation proce-
dure" they treated the core electrons by the Thomas-
Fermi method and the valence electrons according to 
a Schrödinger equation containing an additional po-
tential which describes the interaction of the valence 
electrons with the core electrons. The early work on 
"pseudopotentials" was reviewed by Gombäs [34], 
The objects called pseudopotentials in [34] are poten-
tial-like terms in the Schrödinger equation that were 
designed to account for exchange and correlation in-
teractions as well as for Pauli's exclusion principle but 
which did not replace the Coulomb potentials of the 
nuclei. In 1952 Fues and Statz showed [35] that it is 
possible to replace the Coulomb potential of the ion 
cores (nuclei plus core electrons) by an "ersatz poten-
tial" without changing the wavefunctions and energies 
of the valence electrons significantly. Rather less de-
scriptively, such "ersatz potentials" were later called 
model potentials or pseudopotentials [36], 

The modern ab-initio pseudopotential [37] methods 
replace the Coulomb potential of each nucleus inside 
a radius rc by a "pseudopotential" that is constructed 
ab-initio in such a way that it reproduces the scatter-
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ing properties of the ion cores. The spatial variation of 
the pseudopotential may be made week enough to be 
handled by a plane-wave expansion of the "pseudo-
wavefunctions" ( = solutions of the transformed 
Schrödinger equation). The price to pay for this sim-
plification is that the valence-electron density calcu-
lated from the pseudo-wavefunctions by means of (17) 
is correct only in the interstitial regions, i.e. the regions 
outside the spheres of radius rc around the nuclei. 
However, the contribution of the valence electrons to 
the efg at the nuclei (in the following simply called 
"valence contribution") can be obtained correctly only 
if the non-spherical part of the valence-electron den-
sity is known with sufficient accuracy. For the present 
application of the ab-initio pseudopotential method it 
is therefore essential that the true, aspherical valence-
electron wavefunction can be reconstructed from the 
pseudo-wavefunction [38, 39]. 

The reconstruction proceeds as follows. The Kohn-
Sham equations are solved self-consistently inside a 
sphere of radius r rec (chosen slightly larger than rc) 
using the electrostatic potential due to the nucleus and 
its core electrons as external potential <Z>ext. The as-
pherical boundary conditions at r = r rec are taken 
from the pseudopotential calculation. As a matter of 
principle, the accuracy of the valence-electron density 
obtained in this way and of the efg derived from it is 
limited by the over-all accuracy of the pseudopoten-
tial method. Since the reconstruction technique may 
introduce small additional inaccuracies, the efg ob-
tainable by the ab-initio pseudopotential method will 
clearly be less accurate than those computed by the 
F L A P W method. This drawback has to be weighted 
against the fact that the plane-wave pseudopotential 
method requires much less computational effort than 
the F L A P W method, especially for simple metals such 
as Al. An example will be given in Sect. 2.2.1, where the 
pseudopotential method has enabled us to treat a 
large supercell containing as many as 124 Al atoms. 

In problems dealing with crystals containing de-
fects, the strength of both the F L A P W method and 
the plane-wave pseudopotential method is that they 
permit to calculate ab-initio the forces acting on the 
nuclei and thus to allow fully for the so-called lattice 
relaxation, i.e. for the fact that in the neighbourhood 
of an atomic defect the nuclei are displaced from their 
regular lattice sites. The relaxed positions of the nuclei 
are determined by moving them under the influence of 
the forces until all of them have reached positions of 
zero force. By a systematic procedure this can be 

achieved with an acceptable numerical effort. In both 
methods the formula for the atomic forces simplify 
when it is assumed that the electronic density has been 
determined self-consistently for the given basis set. In 
this case the plane-wave pseudopotential method 
yields just the Hellmann-Feynman force [40], which is 
the physical electrostatic force on the nuclei. The 
F L A P W method, however, requires correction terms 
arising from the localized parts of the basis functions 
of the (in practice) incomplete basis set. In the present 
paper the force formula of Soler and Williams [41] is 
employed. This formula, which was originally devel-
oped for the APW method of Soler and Williams [41], 
has recently been shown [42] to be applicable to the 
F L A P W basis set, too. A general approach to the 
computation of ab-initio forces without regarding to 
a special basis set is given in [43]. 

The high-accuracy determination of the lattice re-
laxation is essential for the reliable computat ion of the 
efg around atomic defects in crystals since these de-
pend sensitively on the positions of the nuclei (see 
Sect. 2). In this respect the supercell method is clearly 
superior to the alternatives that have been in the liter-
ature, viz. the Green's function method [44] and real-
space cluster calculations. 

The Green's function (GF) method, which considers 
the atomic defect as a localized perturbation of an 
otherwise perfect crystal, was combined with the 
Korringa-Kohn-Rostoker (KKR) method [45, 46] by 
Dederichs et al. [47] in a full-potential version. In con-
trast to the two methods used in the present work, in 
this K K R - G F method the lattice relaxation around 
an atomic defect cannot be calculated by moving the 
atoms until the computed forces on them vanish. The 
main reason for this is that the K K R - G F method 
employs the Green's function of the ideal crystal 
rather than that of the perturbed crystal. Hence in the 
computation all a toms outside the defect must be 
placed on regular lattice sites. An approximate way to 
take the lattice relaxation into account is to compute 
the forces acting on the atoms at regular lattice sites 
and determine their displacements under these forces 
from lattice statics, making use of the Born-von-Kar-
man coupling parameters as obtained from the 
phonon spectra of the ideal crystal. Since these 
parameters do not allow for defect-induced changes, 
this procedure can give reliable results only if the lat-
tice relaxations are small, as may be the case around 
monovacancies or substitutional foreign atoms. The 
method is definitely less suitable for self-interstitials, 
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e.g., <100) dumb-bells in fee metals, since here some 
atoms are located far f rom regular sites. This difficulty 
may be circumvented, at least in principle, by increas-
ing the size of the defect, i.e. by considering the origi-
nal atomic defect together with a cluster of a few 
surrounding shells of neighbouring a toms as "defect", 
Inside the "defect" the relaxation can be carried out 
using the computed interatomic forces. However, the 
required increase in size of the defect would entail a 
large increase in computa t ion time. Fo r the time be-
ing, this makes this approach to the self-interstitial 
problem rather impractical. 

In order to perform real-space cluster calculations of 
efg even for small clusters, several approximations 
have to be made, some of which may be quite serious. 
We illustrate this for the real-space linear-muffin-tin-
orbital method [48]. Here the most serious approxi-
mation in the computat ion of efg generated by defects 
is the so-called atomic-sphere approximation (ASA) 
[49]. This approximation replaces the Wigner-Seitz 
cells of the atoms by spheres of equal volume, inside 
of which the potential is assumed to be spherically 
symmetric. It is obvious that the ASA may influence 
the accuracy of the aspherical part of the valence-elec-
tron density and thus the computed efg considerably. 
Furthermore, within the ASA the computat ion of 
atomic forces is a serious problem. At present, in the 
real-space linear-muffin-tin-orbital method the lattice 
relaxation cannot be taken into account in a satisfac-
tory way. The consequences of this will be illustrated 
in Sect. 2.2.1. 

1.3 Computation of the Electric Field-Gradient Tensor 

As outcome of a self-consistent F L A P W calculation 
or of a pseudopotential calculation with subsequent 
reconstruction of the true valence wavefunctions the 
aspherical valence-electron density, nv (r), and the posi-
tions of the nuclei, are known. In both types of 
calculation the core states have initially been assumed 
to be spherically symmetric. This allows us, in the 
computat ion of the efg, to replace them by point 
charges and to combine them with the nuclear charges 
to give us ion charges e Z f n located at /?„. The total 
charge density of the crystal may thus be written as 

g(r) = e ^ Z r S(r - RJ - enjr). (18) 

Inserting (18) into (9) gives us the following expression 
for the sum of the contr ibutions of the ion charges 

eZ'fn (in the following called lattice contribution) and 
of the valence electrons to the tensor of the efg at a 
nucleus in the origin of the coordinate system 

(R0 = 0): 
3 ( R a ) M j 

— e njr) 

RI 
3 x, Xj 

h . 
Rl 

- 4 d r . (19) 

In (19) the dashed sum goes over all nuclei, at posi-
tions /?a, except for the nucleus at the origin.1 

The fact that so far the core charge density of the 
nucleus at R0 = 0 has been treated as spherically sym-
metric has the consequence that it does not contribute 
to the efg. However, because of the weighting factor 
1/r3, the efg is highly sensitive to asphericities of the 
charge density close to the nucleus. This means that 
even small deviations of the core charge density of the 
nucleus at R0 from spherical symmetry may con-
tribute strongly to the efg acting on it. Within the 
framework of First-order perturbat ion theory this con-
tribution, I^-ore, may be estimated by inserting a factor 
(1 — y(r)) into the integrand of (9) [50, 51] and using 
0(1") of (18). To see this, let us consider the electric 
quadrupole moment Q of the nucleus at R0 = 0 as a 
perturbation 

$Q(r)=-e2 feiy 
5 r 3 Y l ° 

(20) 

acting on the core electrons. (y 2 0 ( r ) = the spherical 
harmonic of angular momentum / = 2 and m = 0.) 
This perturbation induces a quadrupole moment 
<2ind(r) in the core charge density. F rom first-order 
perturbation theory it follows [52] that the induced 
quadrupole moment is spherically symmetric and pro-
portional to Q. We may therefore write 

Qi«*ir)=:-y(r)Q. (21) 

The function y(r) introduced by (21) is called Stern-
heimer function. In the approximation leading to (21) 
the total quadrupole moment of the system nucleus 
plus core electrons at a distance r f rom the nucleus is 
given by QioX = (1 — y(r))Q. Outside the region of the 
core charge density the total quadrupole moment and 

In the literature a different notation is occasionally used, 
in which the lattice contribution to the efg is defined as the 
contributions of all charges outside a sphere of radius 
~ d/2 around the nucleus considered, with d = nearest-
neighbour distance. 
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thus y (r) cannot vary. Therefore, for r > d/2, y (r) as-
sumes a constant value, y x , known as Sternheimer or 
antishielding factor. A charge at a distance r from the 
nucleus not belonging to the system "nucleus plus core 
electrons" (e.g., due to valence electrons) "sees" the 
total quadrupole moment Q{oi(r) rather than the nu-
clear quadrupole moment Q. Thus, if we wish to ex-
press the quadrupolar transition frequencies in terms 
of the nuclear quadrupole moment Q, we have to 
multiply the external charges - in the present case 
those of the valence electrons and the ion charges 
eZ, i o n (a ^ 0) - by the factor (1 — y(r)). This gives us 
for the core contribution to the efg 

3 ( R M R J l _ ö t L R 3 

Ri 

+ e n v ( , ) y ( r ) ( ^ - ^ ) d r . (22) 

where in the first term we were justified in replacing 
y( r) by V« s i n c e th e i ° n charges are at distances from 
the nucleus that are larger than d/2. Within the frame-
work of first-order perturbation theory the determina-
tion of V™" may thus be reduced to the computation 
ofy(r ) . 

In combination with the F L A P W method the pres-
ent paper uses an alternative approach (see [53, 54]) 
that has the advantage of not being restricted to per-
turbation theory. It proceeds as follows. 

The self-consistent solution of the Kohn-Sham 
equations by means of the F L A P W method gives us 
the effective potential <2>eff. In the vicinity of a nucleus 
(for simplicity assumed to be at R0 = 0) it may be 
expanded in spherical harmonics according to 

Im 
(23) 

In the self-consistency procedure described so far the 
core wavefunctions f ,-(»•) were obtained as solutions 
of the Kohn-Sham equation (12) with spherically aver-
aged effective potential. As a consequence, the result-
ing core-electron density is up to now spherically sym-
metric. The asphericity of the effective potential (23), 
however, leads to a polarization of the core-electron 
density. This polarization can be computed at the end 
of the F L A P W calculation by solving the aspherical 
Kohn-Sham equation 

y — A + X * i« OO Yim (') V i (') = «i Vi (') (24) 2 m. ,m 

for the correct wavefunctions f , (r) of all z = Z 0 — Zq°" 
core electrons, where Z 0 is the charge number of the 
nucleus under consideration. For "true" core states, 
i.e. core states whose charge density decreases to zero 
within d/2, (24) is an "atomic" problem, with no solid-
state boundary conditions to be satisfied. If the core 
wavefunctions are known, the - now aspherical -
core-electron density is given by 

ne(r)= X 
i = 1 

(25) 

Inserting — en c(r) into (9) gives us the contribution 

x / c o r e 
ij = — e nc{r) 

3x ixJ-
(26) 

of the core electrons to the efg tensor at R0 = 0. From 
(19) and (26) we thus obtain to a good approximation 
the total efg tensor 

V- • = Vvl 
• J I J 

, i / c o r e 'j (27) 

As described so far the present method is a "one-
shot approximation", since the reaction of the valence 
electrons to the asphericity of the core-electron den-
sity has been neglected. It has the advantage over the 
Sternheimer-function approach that the computat ion 
of the aspherical core-electron density, nc(r), may be 
included in the self-consistency cycle of the F L A P W 
method without a significant increase in computa-
tional time. Exploratory computat ions indicate that 
the "one-shot approximation" may give quite accu-
rate results for the core contributions to the efg. It 
appears that this is due to the fact that the asphericity 
of the core charge is in general small compared to that 
of the valence charge density (see Sect. 2.2). 

The approach described above for calculating the 
core contribution to the efg relies on the fact that the 
aspherical effective potential (13) is known. In the 
pseudopotential method the correct from of ^ f f l r ) in 
the vicinity of the nucleus considered is unknown, 
owing to the introduction of the pseudopotential. Un-
fortunately, this is still true after the true valence 
wavefunctions are reconstructed [39], since in the re-
construction program the small asphericity of the po-
tential inside the reconstruction sphere is neglected. 
This should be a good approximation since the cor-
rect aspherical valence-electron density is almost com-
pletely determined by the aspherical boundary condi-
tions supplied by the pseudopotential calculation. Of 
course, if the correct aspherical charge density is 
known, we may solve Poisson's equation in order to 
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obtain the correct aspherical effective potential, but 
this has so far not been implemented in the recon-
struction program. Therefore, at present the calcula-
tion of the core contribution to the efg in the pseudo-
potential formalism is not practicable. The use of the 
Sternheimer function, y(r), is an alternative, but this 
has so far not been done either. 

Recent progress has allowed us to take into ac-
count, within the F L A P W method, the influence of 
the high-lying core states (e.g., of 3s and 3p electrons 
in Cu) on the efg together with the valence contribu-
tion with the help of so-called local orbitals [55, 56] 
without significant increase in computing time. The 
results of a local-orbital calculation and of the "one-
shot approximation" will be compared in Sects. 2.2.1 
and 2.2.2 for two test cases. 

2. Electric Field Gradients in FCC Metals 

2.1 Crystallographic Classification 

N Q D O R allows us, under suitable experimental 
conditions, to detect N Q R transitions of nuclei that 
experience the same efg. In the investigation of atomic 
defects in crystals a necessary (but by no means suffi-
cient) condition for this is that these nuclei all have the 
same distance from the defect centres. Nuclei at the 
same distance are said to lie on the same shell. We 
number the shells according to increasing distances in 
the perfect lattice. In the fee lattice the distances from 
a fixed lattice site are 

© © © © » © © © © © 

d=l j « « , , (28) 

where a0 is the edge length of the elementary cube and 
« e N . Examples for the numbering of shells according 
to (28) are a vacant lattice site or a substitutional 
foreign atom (Fig. 1, left). 

If the efg tensors at the nuclei are not required by 
symmetry to have the same principal components 
(they are always allowed to differ in the crystallo-
graphic orientation of their axes), we introduce sub-
shells. This is illustrated on the right-hand side of 
Figure 1. Here a so-called <100) dumb-bell [57] has 
been introduced into an fee lattice by taking out an 
atom from its lattice site and inserting two atoms 
along a <100) axis symmetrically to the vacant site. It 
is obvious that the efg in shell 2 generated by the 
introduction of a <100) dumb-bell will depend on 
whether the nuclear sites lie on the <100) axis through 

© * © © 
© 0 © © T @ 

© © © 
© © © 

f?) 

© © © 
Fig. 1. (001) planes of fee structure. Left: Numbering of 
shells in the neighbourhood of a vacant lattice site or a 
substitutional foreign atom (denoted by 0). Right: Shells 
around a <100) dumb-bell (denoted by 0). • denotes the 
dumb-bell centre. 

the defect centre, or on the <010) or <001) axes. Thus 
in this case shell 2 splits into two subshells 2' and 2". 
The number of sites per defect in a given shell or 
subshell are called the multiplicity of the shell or sub-
shell. 

In the example of Fig. 1 the multiplicity of shell 2 
is 6; the multiplicities of subshells 2' and 2" are 2 
and 4, respectively. For defects with tetragonal point 
symmetry centered at a lattice point with cubic sym-
metry the ratio of the multiplicities of the subshells is 
always 1:2. We distinguish the two subshells by a dash 
and double dash. Note, however, that in the present 
case there are shells which do not split, viz. those 
containing atoms lying on the <111) axes through the 
defect centre. The shell nearest to the defect that satis-
fies this condition is shell 6. 

The subshells may be characterized further accord-
ing to whether their efg tensors have two equal princi-
pal components or not. The first case corresponds to 
r\ = 0, the second case to 0 < rj < 1, the limiting case 
t] = 1 being reached when one of the principal compo-
nents is zero. (The two others must then differ by a 
factor —1.) The cases rj = 0 may easily be found by 
inspection, provided the displacement of the a toms 
accompanying the introduction of a defect does not 
reduce the point symmetry (i.e., the point symmetry 
remains cubic for a vacancy and tetragonal for a 
<100) dumb-bell even if the "lattice relaxation" (cf. 
Sect. 2.2) is allowed for). 

Table 1 summarizes the preceding discussion for the 
two configurations of Figure 1. The first line gives the 
shell number, the second one the radius of the shell 
(neglecting lattice relaxation) in units of ajJ~2. In the 
third line the multiplicities are listed for vacancies and 
substitutional foreign atoms. The fourth lines give the 
multiplicity for <100) dumb-bells. The multiplicities 
are printed in bold face if rj = 0. 
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Table 1. Radii of the different shells (neglecting lattice re-
laxation) around a lattice site in the fee structures in units of 
a0/yf2 and multiplicities for vacancies and substitutional 
foreign a toms (cubic point symmetry) as well as for a <100) 
dumb-bell (tetragonal point symmetry). Bold entries indicate 
that the asymmetry q of the efg is zero by symmetry. 

Shell number 0 1 2 3 4 5 6 

Distance 
from centre 

Multiplicity 
cubic 
tetragonal 2 

1 

12 
4 + 8 

6 
2 + 4 

24 
8 + 16 

2 

12 
4 + 8 

• f i 

24 
8 + 16 

7 6 

8 
8 

2.2 Results of Computations 

Compared with the calculation of efg in perfect 
crystals with non-cubic point symmetry of the nuclear 
sites (e.g., hexagonal metals [58]), in the computation 
of efg in the neighbourhood of defects two additional 
problems have to be solved. 

(i) The atomic positions around the defects are not 
given a priori but must be found by computation. 
This is primarily a problem of computat ion time, 
since a large number of equilibrium conditions 
have to be satisfied simultaneously. 

(ii) If problem (i) is tackled by the supercell method, 
finite-size effects are invariably introduced. They 
affect the results especially for shells near the su-
percell surface. This has to be taken into consider-
ation when the theoretical results are compared 
with experimental data. The finite-size effects may 
be estimated by performing computat ions for dif-
ferent supercell sizes and studying their conver-
gence as a function of the cell size. 

In the following subsections we report on calcula-
tions of atomic positions and efg in the neighbour-
hood of atomic defects in Al and Cu. The supercell 
calculations carried out at Stuttgart using either the 
F L A P W or the pseudopotential method will serve to 
illustrate the general principles outlined in Sect. 1 and 
will allow us to perform a preliminary comparison 
with experimental data. Reference will also be made to 
the calculation by other authors based on the real-
space cluster method [59] or the G F - K K R approach 
[60]. 

2 . 2 . 1 R e s u l t s o n Al 

The supercell calculations on defects in Al to be 
reported in what follows have all been performed for 

the ab-initio lattice constant. The efg in the neighbour-
hood of a monovacancy and the quadrupolar transi-
tion frequencies associated with them have been calcu-
lated using a supercell size of 124 atoms and the 
plane-wave pseudopotential method. For this supercell 
size the atoms of shell 7 lie on the surface of the super-
cell, i.e. halfway between two monovacancies. We may 
thus relax the atomic positions in the first six shells, but 
have to keep in mind that the relaxations of the atoms 
close to the surface (say, those in shells 5 and 6) will 
certainly be affected by the finite size of the supercell. 

Table 2 gives the results of the positions of the 
atoms in the neighbourhood of a monovacancy up to 
shell 4. (The relaxation of the atoms in shell 5 has been 
neglected, since the forces acting on them are very 
small.) Using these atomic positions the quadrupolar 
transition frequencies v2 and v t of the first five shells 
surrounding a monovacancy were computed neglect-
ing the core contribution to the efg. The results are 
shown in Fig. 2 as square symbols. 

In order to test the sensitivity of the computed tran-
sition frequencies to small changes of the atomic posi-
tions, the computat ion was repeated with the atoms of 
shell 4 radially displaced from their relaxed positions 
by 4 • 1 0 _ 3 a o (circles in Figure 2). The comparison 
between the two computat ions demonstrates that the 
efg may depend very sensitively on the lattice relax-
ation. It is therefore not straightforward to obtain 
accurate efg for higher shells. 

Figure 3 shows the theoretical values for the transi-
tion frequencies v2 using the relaxed positions of 
Table 2 together with the experimental values obtained 
after low-temperature electron irradiation [12, 15], 
quenching from high temperatures [15], or cold-work 
[15]. The assignment of the experimentally observed 
frequencies to distinct shells is that of Konzelmann 
et al. [15]. Compared to this, in the assignment sug-
gested by Minier et al. the frequencies of shell two and 
four are interchanged. Experimental [15] and theoret-
ical values for the asymmetry r\, are given in Table 3. 

Table 2. Positions of the nuclei around a monovacancy in Al 
in units of a0 as computed with a 124-atom supercell and the 
plane-wave pseudopotential method. 

Shell Multiplicity Unrelaxed Relaxed position 
position 

1 12 1/2, 1/2, 0 0.4905, 0.4905, 0 
2 6 0. 0, 1 0, 0, 0.9990 
3 24 1/2, 1/2, 1 0.4988, 0.4988, 0.9985 
4 12 1, 1, 0 0.9970, 0.9970, 0 
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TT 400 

300 

relaxed positions 

shell 4 radially displaced by 4 10 a 0 

200 

~ 100 

1 2 3 4 5 
shell 

Fig. 2. Transition frequencies v2 (upper curves) and Vj 
a round monovacancies in Al as calculated with a 124-atom 
supercell and the plane-wave pseudopotential method with 
subsequent reconstruction of the true valence wavefunc-
tions. The core contribution has been neglected. The squares 
have been obtained with the relaxed positions; the circles 
result f rom an outward displacement of shell 4 by 4 • 10" 3 a0. 
The lines serve only to guide the eyes. 

400 

300 

200 

100 

exper iment ( K o n z e l m a n n et al. 

theory (vacancies in Al) 

3 
shell 

Fig. 3. Circles: Transition frequencies v2 observed after low-
temperature electron irradiation, quenching, or cold-work of 
Al. Squares: Values computed for a monovacancy using a 
124-atom supercell and the plane-wave pseudopotential 
method. The core polarization has been neglected. 

Table 3. Experimental and theoretical values of rj a round a 
monovacancy in Al. The theoretical values were computed 
with a 124-atom supercell and the pseudopotential method. 

Shell 1 2 3 4 5 

1 0.59 0 0.24 0.14 0.40 
(theory) 

ri 0.67-0.71 ~ 0 0.24-0.41 0.11-0.41 -
(experiment) 

The entry zero (0) means that q vanishes by symmetry. 
For the first shell the experimental and theoretical val-
ues of the transition frequencies (see Fig. 3) and of q are 
in good agreement. This leads to the conclusion that 
the experimental lines at 405 and 310 kHz are due to 
the nearest neighbours of monovacancies. The fact that 
this pair of lines is observed not only after electron 
irradiation and cold-work but also after quenching 
from high temperatures supports this interpretation. 

Ferreira and Frota-Pessoa have calculated the efg 
acting on the nearest neighbours of a monovacancy in 
Al using the real-space linear-muffin-tin-orbital ap-
proach [59]. Neglecting lattice relaxation (cf. Sect. 1.2) 
they obtained v2 = 350 kHz and q = 0.57. According 
to our computat ions the lattice relaxation causes the 
efg at the nearest-neighbour site to increase by a factor 
~ 1.15. Hence the result of Ferreira and Frota-Pessoa, 
as far as it goes, is in good agreement with ours. 

For the shells 2, 3 and 4 a final statement cannot be 
made at present time. On the one hand, the computed 
values are subject to the uncertainties due to the finite 
size effects discussed. On the other hand, the assign-
ment of Konzelmann, although similar to that of 
Minier [12], should not be considered definitive. 

The best check of the reliability of the methods 
described in Sect. 1 is to compute the efg around 
substitutional foreign atoms and to compare them 
with experiments on dilute alloys. In this case the 
assignment of the measured transition frequencies to 
distinct shells is much easier since one can be sure that 
all lines in the N Q D O R spectrum are due to only one 
atomic defect, namely the substitutional foreign atom. 
Using a small supercell of 16 atoms only, F L A P W 
calculations have been carried out on substitutional 
vanadium and iron atoms in Al. Since for this super-
cell size the second shell already lies on the supercell 
surface, the only atomic positions that could be re-
laxed were those in the first shells surrounding the 
foreign atoms. For comparison, an F L A P W calcula-
tion with a supercell of 15 atoms has been performed 
on a monovacancy, too. The results of these two cal-
culations are given in Tables 4 and 5. 

As may be seen from Table 4, the nearest-neighbour 
relaxations are about the same for vanadium and for 
monovacancies but are substantially larger for iron. 
The comparison with Table 2 shows that the small 
supercell calculation underestimates the relaxations, 
but only moderately so. 

Table 5 compares the calculated transition frequen-
cies v2 and Vj and the corresponding rj with the exper-
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Table 4. Relaxation of the first shell a r o u n d the substi tu-
t ional foreign a toms V and Fe, and a monovacancy in Al 
as computed for 16-(15-)atom supercells by the F L A P W 
method. 

Unrelaxed 
posit ion 

Relaxed positions Unrelaxed 
posit ion 

V Fe monovacancy 

1/2, 1/2, 0 0.492, 0.492, 0 0.486, 0.486, 0 0.492, 0.492, 0 

Table 5. Q u a d r u p o l a r t ransi t ion frequencies of the first shell 
sur rounding the subst i tut ional foreign a toms V and Fe, and 
the monovacancy in Al as computed for 16-(15-)atom super-
cells by the F L A P W method. The core cont r ibu t ion has been 
calculated with the "one-shot approx imat ion" . In the respec-
tive third lines the experimental value for r] and the theoret-
ical value for V.. have been used. 

tl V 2 v i 
T / c o r e / 
' zz / 

[kHz] [kHz] r/"val -+• lat 
zz 

V theory 0 . 2 1 2 2 0 6 5 0 + 0 . 0 8 

experiment [11] 0 . 1 2 1 2 5 0 6 3 5 

theory with 
experimental rj 0 . 1 2 1 2 3 0 6 2 0 

Fe theory 0 . 7 4 7 0 3 6 0 + 0 . 3 0 

experiment [11] 0 . 5 7 5 0 0 3 4 5 

theory with 
experimental r\ 0 . 5 7 4 8 0 3 3 0 

m o n o - theory 0 . 9 3 9 0 3 8 0 - 0 . 1 5 

vacancy experiment [12, 15] 0 . 6 9 4 0 5 3 1 0 

theory with 
experimental rj 0 . 6 9 4 1 5 3 1 5 

valence electrons to the asphericity of the core-elec-
tron density is completely negligible. Figure 4 shows 
indeed that the / = 2, m = 0 component of the core-
electron density, 

imental values [11,12, 15], The third line in each entry 
gives the frequencies v2 and if they are calculated by 
combining the computed efg with the experimentally 
determined asymmetry. Considering the small super-
cell size used, the agreement between the experimental 
and theoretical frequencies may be called acceptable. 
By contrast, the calculated r\ values are much too 
large; so one should always use experimental asym-
metries if small supercells are employed. 

Table 5 also gives the core contributions (from Is, 
2s, and 2p electrons) to the large component (V,z) of 
the efg acting on the nearest-neighbour nuclei as 
calculated by the "one-shot approximation" of 
Sect. 1.3. In order to test the reliability of this approx-
imation for substitutional iron the computat ion of the 
aspherical core-electron density was included in the 
self-consistency cycle of the F L A P W method. This 
computation yielded values for v2 and q very similar 
to those of the "one-shot approximation", namely 
v2 = 460 MHz and rj — 0.7. Hence, the reaction of the 

nc
20(r) = \nc(r)Y2*(r)dQ, (29) 

which dominates the core contribution to the efg, see 
(26), is small compared with the corresponding com-
ponent of the valence-electron density. Because of the 
weighting of the core-electron density in (26) by the 
factor r ~ 3, the core contribution to the efg is neverthe-
less important but apparently handled well enough by 
the the "one-shot approximation". Furthermore, the 
additional contribution of the 2p electrons of Al of the 
efg acting on the nearest-neighbour site of a substitu-
tional iron atom has been considered using the local-
orbital method implemented in the new F L A P W code 
WIEN 95 [56], This calculation gave v2 = 440 kHz 
and rj = 0.9. With the "one-shot approximation" we 
obtain v2 = 480 kHz and r/ = 0.8 if only the contribu-
tions of the 2p core electrons and of the valence elec-
trons are taken into account. 

The efg surrounding a (100) dumb-bell - the stable 
self-interstitial configuration in fee metals - have been 
calculated for a 65-atom supercell using the F L A P W 
method. Here shell 4 lies on the surface of the super-
cell. The relaxed atomic positions up to shell 3 are 
shown in Table 6. Table 7 gives the transition frequen-
cies computed using these positions as well as the 
contribution of the core electrons (Is, 2s, and 2p) to 
the efg as determined by the "one-shot approxima-
tion". The fact that this contribution comes out rather 

610 

4 1 0 

[ 1/a.u.] 

210 

r n ,0(r) valence electrons 

r n\,.( r) core electrons 

0.0 0.5 1.0 1.5 
r [a.u.] 

2.0 2.5 

Fig. 4. 1 = 2, m = 0 component of the valence and core-
electron density times r2 at the nearest-neighbour a toms of 
subst i tut ional iron in AI (1 a.u. = 0.529 Ä). 
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Table 6. Positions of the nuclei surrounding a <100) dumb-
bell in Al in units of a0 as computed with a 65-atom supercell 
and the F L A P W method. 

Shell Multi- Unrelaxed Relaxed positions 
plicity positions 

0 2 0, 0, 0 0, 0, 0.292 
(dumb-bell 
atoms) 
1' 4 1/2, 1/2, 0 0.470, 0.470, 0 
1" 8 0, 1/2, 1/2 0, 0.564, 0.534 
2' 2 0, 0, 1 0, 0, 0.994 
2" 4 1, 0, 0 1.004, 0, 0 
3' 8 1/2, 1/2, 1 0.503, 0.503, 1.012 
3" 16 1, 1/2, 1/2 1.003, 0.507, 0.494 

Table 7. Transition frequencies v2 and Vj, asymmetry rj, and 
core contribution to the efg for a (100) dumb-bell in Al 
as computed with a 65-atom supercell and the F L A P W 
method. 

Shell Multi-
plicity 

1 V2 
[kHz] [kHz] 

j/core/ 
1/val + lat zz 

0 2 0 560 280 - 0 . 2 4 
1' 4 0.4 460 280 - 0 . 0 5 
1" 8 0.2 1760 920 + 0.04 
2' 2 0 300 150 + 0.17 
2" 4 210 200 -0.11 
3' 8 0.8 350 300 + 0.08 
3" 16 0.2 500 270 + 0.09 

large for the efg acting on the dumb-bell a toms has to 
be considered with caution for two reasons: 

1. For small distances from the nucleus the aspheric-
ity of the core-electron density is not small com-
pared with the asphericity of the valence-electron 
density, hence it should be included in the self con-
sistency cycle. 

2. Since the two "dumb-bell atoms" are separated by 
about 0.6 a0 only, their 2p orbitals overlap. This 
means that these orbitals should not be treated as 
"core states" in the sense of the general theory of 
Sect. 1, as was done so far. 

U p to now, none of the calculated dumb-bell fre-
quencies have been observed experimentally. This 
may have several reasons. There will almost certainly 
be an intensity problem because of the small multiplic-
ity of some of the subshells, particularly so for shell 0 
and subshell 2' which have multiplicity 2. The smaller 
frequencies may overlap not only with other self-inter-
stitial frequencies but also with vacancy frequencies, 
since self-interstitials are always generated together 

with a comparable density of vacancies. When search-
ing for the dumb-bell lines it should be kept in mind 
that those associated with the 0th shell are uncertain 
because of the problems discussed above, and that 
those of the higher shells may be affected by finite-size 
effects. 

2 . 2 . 2 R e s u l t s o n C u 

The supercell calculations reported in this subsec-
tion have all been performed by means of the F L A P W 
method. The transition frequencies given pertain to 
the isotope 6 3Cu; those of 6 5 Cu are 7.3% lower. 

Table 8 gives the relaxed positions of the atoms in 
the first shell around various substitutional foreign 
atoms as calculated with 16-atom supercells. The re-
laxations of the nearest neighbours of a monovacancy 
as given by the corresponding calculation (15-atom 
supercell) are negligibly small. The transition frequen-
cies in shell 1 computed from these results are listed in 
Table 9 using the experimentally determined lattice 
parameters or (in some cases) the smaller values fol-
lowing from ab-initio LDA calculations. The entries in 
the last two columns are those observed transition 

Table 8. Positions of the nuclei in the first shell surrounding 
substitutional Be, Ni, Pd, and Pt atoms in Cu in units of a0 
as computed with a 16-atom supercell and the F L A P W 
method. 

Unrelaxed 
position 

Relaxed positions Unrelaxed 
position 

Be Ni Pd Pt 

1/2, 1/2, 0 0.495, 
0.495, 0 

0.498, 
0.498, 0 

0.507, 
0.507, 0 

0.509, 
0.509, 0 

Table 9. Transition frequency vq (for 6 3Cu), asymmetry rj, 
and core contribution to the efg for the first shell surrounding 
substitutional foreign a toms and a monovacancy in Cu as 
computed with a 16-(15-)atom supercell and the F L A P W 
method. 

Ab-initio 
«0 

vq [MHz] 

Experi-
mental «0 

ycortj 
yfva! + lat Experi-

ment 
Ab-initio 
«0 

vq [MHz] Vq 
[MHz] 

n 

ycortj 
yfva! + lat 

V'q 
[MHz] 

Be 2.8 2.4 0.2 - 0 . 0 3 2.0 _ 
Ni - 1.3 0.5 + 0.25 1.1 0.2 
Pd 3.6 3.1 0.3 - 0 . 0 6 3.2 0.2 
Pt - 4.3 0.5 - 0 . 0 9 4.7 -

mono-
vacancy 3.6 3.0 0.1 - 0 . 1 9 3.4 -
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frequencies [3, 5, 15] that are closest to the calculated 
ones and experimental values for asymmetry, which 
have been determined by N M R [62]. Furthermore, 
Table 9 contains the calculated asymmetries and the 
ratios of the core contributions (Is —3p electrons) to 
the sum of the valence-electron and lattice contribu-
tions. 

Considering the smallness of the supercells used, the 
agreement between the measured and the computed 
frequencies is quite good, particularly so if for the 
latter the experimental a0 are used. However, to some 
extent this agreement may be fortuitous. The calcu-
lated asymmetries at the nearest-neighbour nuclei of 
substitutional Ni or Pd atoms are - as for the substi-
tutional foreign atoms in Al (see Table 5) - too large 
compared with the experimental values. A further 
error of limited but unknown magnitude comes in 
because of the uncertainty in the nuclear quadrupole 
moments of 6 3 Cu and 6 5 Cu discussed in the Introduc-
tion. This error is systematic, however, and may be 
corrected by adjustment if a large enough body of 
accurate computations and reliable experimental data 
becomes available. 

As Table 9 shows, the effect of the core electrons on 
the efg can be quite large. This has been studied in 
more detail for the case of substitutional Ni. Although 
here the "one-shot approximation" gave a rather large 
core-electron contribution, the inclusion of the as-
pherical core-electron density in the self-consistency 
cycle did not change the V,z and rj values. As Fig. 5 
shows, the (2,0) component of the core-electron den-
sity is indeed much smaller than that of the valence-
electron density. This demonstrates that in the present 

/ / 
r n ,0(r) va lence e lec t rons / / 
r n , 0 ( r ) core e lec t rons / 

/ A 

V V / 
0.0 0.5 1.0 1.5 2.0 

r [a.u.] 

Fig. 5. 1 = 2, m = 0 component of the valence and core-
electron density times r2 at the nearest-neighbour a toms of 
substitutional Ni in Cu (1 a.u. = 0.529 Ä). 

case it was justified to neglect the influence of the 
aspherical core-electron density. In addition, the so-
called local-orbital approach [56] was applied to the 
3p electrons. This gave vq = 1.2 M H z and Y\ = 0.6, in 
good agreement with the result vq = 1.2 MHz and 
r] = 0.5 of the simpler "one-shot approximation" treat-
ment of the 3p electrons. 

For the monovacancy an additional calculation 
was performed with a 63-atom supercell. In this case 
shell 4 lies on the cell boundary, so that the atomic 
positions up to shell 3 may be relaxed. However, the 
forces acting on the shell-3 atoms come out so small 
that their relaxation could be neglected. The relaxed 
positions for the first two shells are given in Table 10. 
Note that the displacements at the next-nearest neigh-
bour atoms, while still small (3.6 • 10" 3 a0), are much 
larger than those of the nearest neighbours of the 
vacant site. This may mean that in order to obtain the 
displacement field around a monovacancy in copper 
accurately, we may have to use larger supercells. 

The quadrupolar transition frequencies of the nu-
clei in the first three shells surrounding a monova-
cancy are listed in Table 11 together with the asym-
metries and with the core contributions to the efg as 
calculated by the "one-shot approximation". For the 
first shell the transition frequencies obtained with the 
15-atom or the 63-atom supercell are in reasonable 
agreement; they differ only by approximately 10%. 
The computed asymmetry of the efg tensor acting on 
the nuclei in the first shell is substantially smaller than 
in the case of Al. 

Table 10. Positions of the nuclei surrounding monovacan-
cies in Cu in units of a0 as computed with a 63-atom supercell 
and the F L A P W method. 

Shell Multi- Unrelaxed Relaxed 
plicity positions positions 

1 12 1/2, 1/2, 0 0.4992, 0.4992, 0 
2 6 0, 0, 1 0, 0, 0.9964 
3 24 1/2, 1/2, 1 0.500, 0.500, 1.000 

Table 11. Transition frequency vq (for 6 3Cu), asymmetry t], 
and core contribution to the efg for a monovacancy in Cu 
as computed with a 63-atom supercell and the F L A P W 
method. 

Shell Multiplicity 1 vq [MHz] r/core /T/val + lat 
zz / zz 

1 12 0.2 3.3 - 0 . 1 6 
2 6 0 0.4 + 0.63 
3 24 0.0 0.5 + 0.11 
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The two calculations of the quadrupolar transition 
frequencies vq associated with monovacancies in Cu 
[59, 60] disregard the lattice relaxation. This may not 
be a too serious approximation in the present case but 
is in general not permitted. In their real-space linear-
muffin-tin-orbital calculation Ferreira and Frota-Pes-
soa [59] neglected, in addition, the core contribution 
to the efg. The fact that they obtained rj ~ 1, i.e. a 
much higher asymmetry than predicted by the 
F L A P W method, may point towards a basis weakness 
of the linear-muffin-tin-orbital method in combina-
tion with the ASA for the calculation of efg tensors in 
solids. Correcting for this high rj value reduces the 
transition frequency vq = 4.3 MHz computed by Fer-
reira and Frota-Pessoa [59] to about 3.8 MHz. If we 
apply further the correction for the neglected core 
contribution as given in Table 11, we obtain finally 
vq = 3.2 MHz, which is in satisfactory agreement with 
the F L A P W calculation for the 63-atom supercell. 

The calculation of Drittler et al. [60], using the 
K K R - G F method (see Sect. 1.2), give vq = 5 .6MHz 
if we replace the quadrupole moment <2(63Cu) 
= 160 • 10~ 3 1 m 2 by the value 220 • 10~3 1 m 2 used 
through this paper (cf. Introduction). 

Transition frequencies that might be attributed to 
the first three shells surrounding monovacancies in Cu 
have been found after low-temperature electron and 
proton irradiation [3, 5, 13, 15] as well as after cold-
work [3, 15]. However, none of these lines have been 
observed after quenching of liquid or solid Cu [15,16], 
i.e. under conditions at which a fairly large concentra-
tion of monovacancies should be frozen in. The pres-
ent situation must therefore be considered as incon-
clusive. 

The results of a 65-atom-supercell calculation of the 
relaxed a tom positions and of the efg in the neigh-
bourhood of <100) dumb-bells are shown in Ta-
bles 12 and 13. It is remarkable that the positions of 
the nuclei are in excellent agreement with the posi-
tions predicted by an early calculation [61] based on 
a rather sophisticated model potential. In particular, 
the separation between the two dumb-bell atoms was 
predicted to be 0.60 a0, which agrees well with the 
value 0.58 a0 in Table 12. The core contribution to the 
efg acting on the two "dumb-bell nuclei" (zeroth shell) 
should - for the same reasons as in the case of Al - be 
considered with some caution. 

The comparison with the experimentally observed 
lines [3, 5, 13] encounters difficulties analogous to 
those discussed in Sect. 2.2.1. Moreover, of the shells 

Table 12. Positions of the nuclei in the neighbourhood of a 
<100) dumb-bell in Cu up to shell 3 in units of a0 as com-
puted with a 65-atom supercell and the F L A P W method. 

Shell Multi-
plicity 

Unrelaxed 
positions 

Relaxed positions 

0 2 0, 0, 0 0, 0, 0.289 
(dumb-bell 
atoms) 
1' 
1" 

4 
8 

1/2, 1/2, 0 
0, 1/2, 1/2 

0.476, 0.476, 0 
0, 0.565, 0.530 

2' 2 0, 0, 1 0, 0, 0.997 
2" 4 1, 0, 0 1.007, 0, 0 
3' 8 1/2, 1/2, 1 0.506, 0.506, 1.005 
3" 16 1, 1/2, 1/2 1.004, 0.508, 0.494 

Table 13. Transition frequency vq (for 6 3Cu), asymmetry t], 
and core contribution to the efg for a <100) dumb-bell in Cu 
as computed with a 65-atom supercell and the F L A P W 
method. 

Shell Multiplicity n vq [MHz] p / c o r e j jp/val + lat 

0 2 0 0 . 5 - 1 . 4 0 

1' 4 0 . 9 1 . 3 - 0 . 1 5 

1" 8 0 . 3 6 . 9 + 0 . 0 9 

2 ' 2 0 1 . 7 - 0 . 1 7 

2 " 4 0 . 5 1 . 3 - 0 . 2 0 

3 ' 8 0 . 7 0 . 5 - 0 . 2 9 

3 " 1 6 0 . 3 2 . 9 + 0 . 1 5 

with high multiplicity, the predicted vq for subshell 1" 
lies outside the range covered by the experiments 
(20 kHz to 6 M H z in [3]), whereas those of the sub-
shells 3' and 3" must be considered as very uncertain 
because of finite-cellsize effects. It is therefore too early 
to say to what extent contact has been made between 
experiment and theory. It is clearly necessary to in-
crease the cell size in order to obtain reliable estimates 
for the field gradient in subshell 3' and in particular in 
subshell 3" and to extend the search for transition 
frequencies of subshell 1" to higher frequencies. 

3. Summary 

In combination with the supercell technique the 
F L A P W method as well as the plane-wave pseudopo-
tential method with subsequent reconstruction of the 
correct valence-electron density have proved to be 
powerful tools for the ab-initio calculation of electric 
field gradients in the neighbourhood of atomic defects 
in metals. This is demonstrated by the agreement be-
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tween experiment and theory for the quadrupolar 
transition frequencies of the nearest-neigbour nuclei 
of several substitutional foreign atoms in Al and Cu. 
The investigation also showed that the influence of the 
core electrons on the electric field gradient can be very 
large and should therefore not be neglected. In Al the 
calculated transition frequencies of the nuclei in 
shell 1 around a monovacancy and the largest experi-
mentally observed frequencies are in excellent agree-
ment. This, together with the fact that these lines are 
also present in the N Q D O R spectrum after quenching 
Al samples from high temperatures, leads to the con-
clusion that the lines originate from the nearest-neigh-
bour nuclei of monovacancies. The assignment of the 
other experimentally observed lines to distinct shells 
around specific atomic defects is not possible at pres-
ent. In Cu there seems to be good agreement between 
the calculated transition frequency of the nearest-
neighbour nuclei around a monovacancy and the 
highest transition frequency observed in the N Q D O R 
spectrum after electron and proton irradiation as well 
as after cold-work. The tentative attribution of this 
transition to the nearest neighbours of monovacancies 
is in conflict with the fact that the line has not been 
observed after quenching Cu from high temperatures, 

however. The definitive assignment of the N Q D O R 
lines observed in Al and Cu after different pretreat-
ments to distinct shells around specific atomic defects 
requires further experimental and theoretical investi-
gations. 
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